Nuova ricerca

Marco VILLANI

Professore Associato
Dipartimento di Scienze Fisiche, Informatiche e Matematiche sede ex-Fisica

Insegnamento: Sistemi complessi

Informatica (D.M.270/04) (Offerta formativa 2022)

Obiettivi formativi

Lo studio dei sistemi complessi ha acquisito un ruolo di primo piano non solo fra le attività scientifiche, ma anche nelle aziende e nelle organizzazioni attive sul mercato e nel sociale. Nell'ambito scientifico, esso fornisce un punto di vista nuovo e complementare rispetto a quelli delle discipline tradizionali, mentre in ambito aziendale ed organizzativo esso fornisce sia strumenti concettuali fondamentali per il management in un periodo di rapidi cambiamenti, che strumenti operativi per decifrare le dinamiche dei processi, dei mercati, della finanza.
Si fa necessariamente ampio ricorso a strumenti informatici, sia per simulare dinamiche complesse che per analizzare i risultati delle simulazioni, quindi è opportuno che gli informatici conoscano i principali elementi di questo nuovo approccio e siano in grado di dialogare sia con gli specialisti che con gli utilizzatori dei risultati.

Lo studio dei sistemi complessi è orientato alla ricerca di principi organizzativi in sistemi composti da diversi elementi interagenti in maniera non lineare. E’ stato dimostrato che alcuni comportamenti sono maggiormente influenzati dalle proprietà delle interazioni piuttosto che dalla natura degli elementi del sistema, e questo consente di applicare efficacemente, col dovuto rigore, concetti e metodi simili in sistemi diversi.

Al termine dell’insegnamento lo studente:
• avrà acquisito le principali nozioni relative ai sistemi complessi;
• conoscerà i principali strumenti matematici e computazionali dei sistemi complessi;
• conoscerà le applicazioni della Scienza della Complessità.

Prerequisiti

nessuno;

Programma del corso

Blocco 1 (1 CFU)
Introduzione ai sistemi complessi
Autoorganizzazione

Blocco 2 (2 CFU)
Automi Cellulari
Emergenza

Blocco 3 (2 CFU)
Struttura e dinamica di reti complesse
Multigrafi, Hypergraphs

Blocco 4 (1 CFU)
Self-organising complexity (SOC)
Robustness, degeneracy
Highly optimized tolerance (HOT)

Metodi didattici

La didattica è basata, in via ordinaria, su lezioni frontali, e progetti facoltativi.
Le domande e gli interventi degli studenti sono graditi e incoraggiati. La frequenza non è obbligatoria, ma fortemente consigliata. Il corso è erogato in lingua italiana.
Tutte le informazioni tecniche e organizzative ull'insegnamento, nonché il materiale didattico, saranno caricati su piattaforma Moodle (https://www.fim.unimore.it/site/home/didattica/moodledolly.html). Si invita lo studente ad iscriversi ed a consultare tale piattaforma con regolarità

Testi di riferimento

Nessun testo è obbligatorio. Tutti gli argomenti saranno descritti in lucidi disponibili su Dolly (assieme ad alcuni articoli). Alcuni libri verranno consigliati a chi desidera impadronirsi a fondo del linguaggio della scienza della complessità o approfondirne alcuni aspetti

Verifica dell'apprendimento

La verifica è basata su un esame scritto a risposte aperte (2 domande scelte fra 4-5 domande riguardanti i temi discussi a lezione, occorre avere la sufficienza in entrambe le risposte perché il compito sia sufficiente). Questa prova e' volta a verificare l'apprendimento delle principali tematiche del corso e la capacita' di ragionamento acquisita dagli studenti. Per gli studenti che lo desiderano, è possibile preparare una lezione di un'ora su un argomento monografico (che contribuisce per 1/3 al voto finale). Inoltre, chi preferisce può sostenere un esame orale al posto dello scritto.

Risultati attesi

Risultati di apprendimento attesi

Conoscenza e capacità di comprensione:
Al termine dell’insegnamento lo studente avrà acquisito le principali nozioni relative ai sistemi complessi, ne conoscerà i principali strumenti matematici e computazionali e sarà in grado di comprendere parte della letteratura scientifica attuale.

Capacità di applicare conoscenza e comprensione:
Grazie alla varietà di esempi considerati, lo studente saprà applicare i metodi più appropriati per i diversi casi che dovesse affrontare

Autonomia di giudizio:
Grazie alla varietà di esempi considerati, lo studente saprà identificare gli approcci più efficaci per i diversi casi, e individuarne i limiti

Abilità comunicative:
Lo studente acquisirà il linguaggio della scienza della complessità, e ne dimostrerà la padronanza nel corso dell'esame e dell'eventuale lezione ai compagni

Capacità di apprendimento:
Verranno esaminati diversi casi, passando da una descrizione fenomenologica alla modellistica matematica e ai relativi strumenti di analisi. Questa esperienza amplierà la capacità di apprendimento di nuovi casi e strumenti, e la capacità di modellare fenomeni complessi