Nuova ricerca

GIULIA COLOMBINI

Assegnista di ricerca
Dipartimento di Ingegneria "Enzo Ferrari"


Home |


Pubblicazioni

2024 - A methodology to reduce the computational effort in 3D-CFD simulations of plate-fin heat exchangers [Articolo su rivista]
Torri, Federico; Berni, Fabio; Giacalone, Mauro; Mantovani, Sara; Defanti, Silvio; Colombini, Giulia; Bassoli, Elena; Merulla, Andrea; Fontanesi, Stefano
abstract

The analysis of a plate-fin heat exchanger performance requires the evaluation of key parameters such as heat transfer and pressure drop. In this regard, computational Fluid Dynamics (CFD) can be proficiently adopted, at the design stage, to predict the performance of plate-fin heat exchangers. However, these last are often characterized by a complex geometry, such as in the case of plate exchangers with turbulators, leading to a huge computational effort, which often exceeds the available resources. In this study, a numerical methodology for the simulation of plate heat exchangers is proposed, to bypass the limits imposed by the computational cost. The methodology relies on the simulation of a minimal portion of the exchanger (two plates, one per fluid) characterized by periodic boundary conditions (that mimic the presence of several layers). The total heat exchanged is obtained simply multiplying the calculated heat transfer by the number of plate couples composing the device. Moreover, the two plates allow to calibrate porous media which are adopted to rebuild (in a simplified version) the two fluid circuits of the whole exchanger and obtain the overall pressure drop across the device for both the hot and cold fluids. The proposed approach is validated against experimental data of an oil cooler for automotive application, that is a plate-fin heat exchanger characterized by the presence of turbulators. The numerical outcomes are compared to the experiments in terms of pressure drop and heat transfer for a wide range of volumetric flow rates. Particular attention is devoted to the mesh sensitivity and the adopted computational grid minimizes the number of cells (and, thus, the computational cost), without compromising the accuracy. Moreover, the Reynolds-Stress-Transport turbulence model is accurately selected among the most diffused ones, in order to properly match the test bench data. The proposed methodology allows to reduce of nearly one order of magnitude the total number of cells required for the simulation of the heat exchanger performance. The heat transfer is predicted with high accuracy, i.e. error is always lower than 4%. As for the pressure loss, the deviation compared to the experiments increases up to nearly 15% (for one of the simulated conditions) but it is considered still acceptable.


2024 - Life cycle assessment of lattice structures: Balancing mass saving and productivity [Articolo su rivista]
Colombini, Giulia; Rosa, Roberto; Ferrari, Anna Maria; Defanti, Silvio; Bassoli, Elena
abstract

Additive Manufacturing has revolutionized manufacturing processes, offering design flexibility and advances in various applications. The integration of lattice structures into lightweight designs has attracted attention due to their ability to optimize properties such as stiffness, strength and energy absorption. This paper explores the trade-off between mass reduction and productivity while evaluating the environmental sustainability of lattice structures manufactured with Laser-based powder bed fusion for metals Using Life Cycle Assessment, two design variants for an automotive component are compared: a topologically optimized version with a solid bulk section, and a second design with lattice structures for additional weight reduction. Experimental measurements and a detailed analysis of the laser strategy were performed to build the Life Cycle Assessment inventory. The integration of lattice structures allowed a weight reduction of 6 %, but resulted in a significant decrease in productivity and a higher environmental impact. Surprisingly, lattice geometries, often perceived as green solutions, can have negative sustainability implications due to longer manufacturing times and impact of auxiliary equipment. Successful implementation of environmentally sustainable designs requires a balance between mass reduction and productivity while addressing potential environmental consequences.


2023 - Evaluation of TPMS Structures for the Design of High Performance Heat Exchangers [Relazione in Atti di Convegno]
Torri, F.; Berni, F.; Fontanesi, S.; Mantovani, S.; Giacalone, M.; Defanti, S.; Bassoli, E.; Colombini, G.
abstract

The development of the additive manufacturing tech nology has enabled the design of components with complex structures that were previously unfeasible with conventional techniques. Among them, the Triply Periodic Minimal Surface (TPMS) structures are gaining scientific interest in several applications. Thanks to their high surface-to-volume ratio, lightweight construction, and excep tional mechanical properties, TPMS structures are being investigated for the production of high-performance heat exchangers to be adopted in different industrial fields, such as automotive and aerospace. Another significant advantage of the TPMS structures is their high degree of design flexibility. Each structure is created by replicating a characteristic unit cell in the three spatial dimensions. The three key parameters, namely cell type, cell dimension and wall thickness can be adjusted to provide considerable versatility in the design process. As for the heat exchangers, the variation of these parameters results in different values of heat transfer and pressure drop. If, on the one and, this flexibility leads to a wide range of design possibilities, on the other hand it generates uncertainty when the most suitable cell (with the best set of parameters) has to be selected. Therefore, the aim of the paper is to address the initial challenge in the design process of an innovative heat exchanger that incorporates a TPMS structure, which is the selection of the unit cell. Based on a literature review, four TPMS structures are selected as the most promising ones for the purpose, namely Gyroid, I-WP, Primitive and Diamond. Small prototypes of the selected structures are numerically tested at laminar and turbulent flow conditions to compare their performances in terms of heat transfer and pressure drop against a more traditional solution. In order to ensure an unbiased comparison between the structures, they are compared on equal volume of the specimen, wall thickness and unit cell dimension. Finally, a compact plate heat exchanger based on turbulators is added to the comparison, to investigate the capabilities of the TPMS structures compared to a more conventional solution.