Nuova ricerca

FEDERICA PORTA

Ricercatore t.d. art. 24 c. 3 lett. B
Dipartimento di Scienze Fisiche, Informatiche e Matematiche sede ex-Matematica


Home | Curriculum(pdf) | Didattica |


Pubblicazioni

2023 - A Line Search Based Proximal Stochastic Gradient Algorithm with Dynamical Variance Reduction [Articolo su rivista]
Franchini, G.; Porta, F.; Ruggiero, V.; Trombini, I.
abstract

Many optimization problems arising from machine learning applications can be cast as the minimization of the sum of two functions: the first one typically represents the expected risk, and in practice it is replaced by the empirical risk, and the other one imposes a priori information on the solution. Since in general the first term is differentiable and the second one is convex, proximal gradient methods are very well suited to face such optimization problems. However, when dealing with large-scale machine learning issues, the computation of the full gradient of the differentiable term can be prohibitively expensive by making these algorithms unsuitable. For this reason, proximal stochastic gradient methods have been extensively studied in the optimization area in the last decades. In this paper we develop a proximal stochastic gradient algorithm which is based on two main ingredients. We indeed combine a proper technique to dynamically reduce the variance of the stochastic gradients along the iterative process with a descent condition in expectation for the objective function, aimed to fix the value for the steplength parameter at each iteration. For general objective functionals, the a.s. convergence of the limit points of the sequence generated by the proposed scheme to stationary points can be proved. For convex objective functionals, both the a.s. convergence of the whole sequence of the iterates to a minimum point and an O(1 / k) convergence rate for the objective function values have been shown. The practical implementation of the proposed method does not need neither the computation of the exact gradient of the empirical risk during the iterations nor the tuning of an optimal value for the steplength. An extensive numerical experimentation highlights that the proposed approach appears robust with respect to the setting of the hyperparameters and competitive compared to state-of-the-art methods.


2023 - Constrained and unconstrained deep image prior optimization models with automatic regularization [Articolo su rivista]
Cascarano, Pasquale; Franchini, Giorgia; Kobler, Erich; Porta, Federica; Sebastiani, Andrea
abstract

Deep Image Prior (DIP) is currently among the most efficient unsupervised deep learning based methods for ill-posed inverse problems in imaging. This novel framework relies on the implicit regularization provided by representing images as the output of generative Convolutional Neural Network (CNN) architectures. So far, DIP has been shown to be an effective approach when combined with classical and novel regularizers. Unfortunately, to obtain appropriate solutions, all the models proposed up to now require an accurate estimate of the regularization parameter. To overcome this difficulty, we consider a locally adapted regularized unconstrained model whose local regularization parameters are automatically estimated for additively separable regularizers. Moreover, we propose a novel constrained formulation in analogy to Morozov's discrepancy principle which enables the application of a broader range of regularizers. Both the unconstrained and the constrained models are solved via the proximal gradient descent-ascent method. Numerical results demonstrate the robustness with respect to image content, noise levels and hyperparameters of the proposed models on both denoising and deblurring of simulated as well as real natural and medical images.


2023 - Correction to: A Line Search Based Proximal Stochastic Gradient Algorithm with Dynamical Variance Reduction (Journal of Scientific Computing, (2023), 94, 1, (23), 10.1007/s10915-022-02084-3) [Articolo su rivista]
Franchini, G.; Porta, F.; Ruggiero, V.; Trombini, I.
abstract

We restated both the statement and the proof of Theorem 3. We stress that the proof only changes in obtaining the inequality (A11) from (A10), but for a better readability we report all the arguments of the proof.


2023 - Diagonal Barzilai-Borwein Rules in Stochastic Gradient-Like Methods [Relazione in Atti di Convegno]
Franchini, G.; Porta, F.; Ruggiero, V.; Trombini, I.; Zanni, L.
abstract


2023 - Hybrid limited memory gradient projection methods for box-constrained optimization problems [Articolo su rivista]
Crisci, S.; Porta, F.; Ruggiero, V.; Zanni, L.
abstract

Gradient projection methods represent effective tools for solving large-scale constrained optimization problems thanks to their simple implementation and low computational cost per iteration. Despite these good properties, a slow convergence rate can affect gradient projection schemes, especially when high accurate solutions are needed. A strategy to mitigate this drawback consists in properly selecting the values for the steplength along the negative gradient. In this paper, we consider the class of gradient projection methods with line search along the projected arc for box-constrained minimization problems and we analyse different strategies to define the steplength. It is well known in the literature that steplength selection rules able to approximate, at each iteration, the eigenvalues of the inverse of a suitable submatrix of the Hessian of the objective function can improve the performance of gradient projection methods. In this perspective, we propose an automatic hybrid steplength selection technique that employs a proper alternation of standard Barzilai–Borwein rules, when the final active set is not well approximated, and a generalized limited memory strategy based on the Ritz-like values of the Hessian matrix restricted to the inactive constraints, when the final active set is reached. Numerical experiments on quadratic and non-quadratic test problems show the effectiveness of the proposed steplength scheme.


2023 - Learning rate selection in stochastic gradient methods based on line search strategies [Articolo su rivista]
Franchini, G.; Porta, F.; Ruggiero, V.; Trombini, I.; Zanni, L.
abstract

Finite-sum problems appear as the sample average approximation of a stochastic optimization problem and often arise in machine learning applications with large scale data sets. A very popular approach to face finite-sum problems is the stochastic gradient method. It is well known that a proper strategy to select the hyperparameters of this method (i.e. the set of a-priori selected parameters) and, in particular, the learning rate, is needed to guarantee convergence properties and good practical performance. In this paper, we analyse standard and line search based updating rules to fix the learning rate sequence, also in relation to the size of the mini batch chosen to compute the current stochastic gradient. An extensive numerical experimentation is carried out in order to evaluate the effectiveness of the discussed strategies for convex and non-convex finite-sum test problems, highlighting that the line search based methods avoid expensive initial setting of the hyperparameters. The line search based approaches have also been applied to train a Convolutional Neural Network, providing very promising results.


2023 - Neural architecture search via standard machine learning methodologies [Articolo su rivista]
Franchini, Giorgia; Ruggiero, Valeria; Porta, Federica; Zanni, Luca
abstract

In the context of deep learning, the more expensive computational phase is the full training of the learning methodology. Indeed, its effectiveness depends on the choice of proper values for the so-called hyperparameters, namely the parameters that are not trained during the learning process, and such a selection typically requires an extensive numerical investigation with the execution of a significant number of experimental trials. The aim of the paper is to investigate how to choose the hyperparameters related to both the architecture of a Convolutional Neural Network (CNN), such as the number of filters and the kernel size at each convolutional layer, and the optimisation algorithm employed to train the CNN itself, such as the steplength, the mini-batch size and the potential adoption of variance reduction techniques. The main contribution of the paper consists in introducing an automatic Machine Learning technique to set these hyperparameters in such a way that a measure of the CNN performance can be optimised. In particular, given a set of values for the hyperparameters, we propose a low-cost strategy to predict the performance of the corresponding CNN, based on its behavior after only few steps of the training process. To achieve this goal, we generate a dataset whose input samples are provided by a limited number of hyperparameter configurations together with the corresponding CNN measures of performance obtained with only few steps of the CNN training process, while the label of each input sample is the performance corresponding to a complete training of the CNN. Such dataset is used as training set for a Support Vector Machines for Regression and/or Random Forest techniques to predict the performance of the considered learning methodology, given its performance at the initial iterations of its learning process. Furthermore, by a probabilistic exploration of the hyperparameter space, we are able to find, at a quite low cost, the setting of a CNN hyperparameters which provides the optimal performance. The results of an extensive numerical experimentation, carried out on CNNs, together with the use of our performance predictor with NAS-Bench-101, highlight how the proposed methodology for the hyperparameter setting appears very promising.


2023 - Piece-wise Constant Image Segmentation with a Deep Image Prior Approach [Relazione in Atti di Convegno]
Benfenati, A.; Catozzi, A.; Franchini, G.; Porta, F.
abstract

Image segmentation is a key topic in image processing and computer vision and several approaches have been proposed in the literature to address it. The formulation of the image segmentation problem as the minimization of the Mumford-Shah energy has been one of the most commonly used techniques in the last past decades. More recently, deep learning methods have yielded a new generation of image segmentation models with remarkable performance. In this paper we propose an unsupervised deep learning approach for piece-wise image segmentation based on the so called Deep Image Prior by parameterizing the Mumford-Shah functional in terms of the weights of a convolutional neural network. Several numerical experiments on both biomedical and natural images highlight the goodness of the suggested approach. The implicit regularization provided by the Deep Image Prior model allows to also consider noisy input images and to investigate the robustness of the proposed technique with respect to the level of noise.


2022 - Biomedical Image Classification via Dynamically Early Stopped Artificial Neural Network [Articolo su rivista]
Franchini, Giorgia; Verucchi, Micaela; Catozzi, Ambra; Porta, Federica; Prato, Marco
abstract

It is well known that biomedical imaging analysis plays a crucial role in the healthcare sector and produces a huge quantity of data. These data can be exploited to study diseases and their evolution in a deeper way or to predict their onsets. In particular, image classification represents one of the main problems in the biomedical imaging context. Due to the data complexity, biomedical image classification can be carried out by trainable mathematical models, such as artificial neural networks. When employing a neural network, one of the main challenges is to determine the optimal duration of the training phase to achieve the best performance. This paper introduces a new adaptive early stopping technique to set the optimal training time based on dynamic selection strategies to fix the learning rate and the mini-batch size of the stochastic gradient method exploited as the optimizer. The numerical experiments, carried out on different artificial neural networks for image classification, show that the developed adaptive early stopping procedure leads to the same literature performance while finalizing the training in fewer epochs. The numerical examples have been performed on the CIFAR100 dataset and on two distinct MedMNIST2D datasets which are the large-scale lightweight benchmark for biomedical image classification.


2022 - On the convergence properties of scaled gradient projection methods with non-monotone Armijo–like line searches [Articolo su rivista]
Crisci, S.; Porta, F.; Ruggiero, V.; Zanni, L.
abstract

In order to solve constrained optimization problems on convex sets, the class of scaled gradient projection methods is often exploited in combination with non-monotone Armijo–like line search strategies. These techniques are adopted for efficiently selecting the steplength parameter and can be realized by means of two different approaches: either the one along the arc or the one along the feasible directions. In this paper we deeply analyze the convergence properties of the scaled gradient projection methods equipped with the non-monotone version of both these Armijo–like line searches. To the best of our knowledge, not all the convergence results proved for either the non-scaled or the monotone gradient projection algorithm have been also stated for the non-monotone and scaled counterpart. The goal of this paper is to fill this gap of knowledge by detailing which hypotheses are needed to guarantee both the stationarity of the limit points and the convergence of the sequence generated by the non-monotone scaled gradient projection schemes. Moreover, in the case of polyhedral constraint set, we discuss the identification of the active set at the solution for the sequence generated by the along the arc approach. Several numerical experiments on quadratic and non-quadratic optimization problems have been carried out in order to compare the behaviour of the considered scaled gradient projection methods.


2022 - On the First-Order Optimization Methods in Deep Image Prior [Articolo su rivista]
Cascarano, P.; Franchini, G.; Porta, F.; Sebastiani, A.
abstract

Deep learning methods have state-of-The-Art performances in many image restoration tasks. Their effectiveness is mostly related to the size of the dataset used for the training. Deep image prior (DIP) is an energy-function framework which eliminates the dependency on the training set, by considering the structure of a neural network as an handcrafted prior offering high impedance to noise and low impedance to signal. In this paper, we analyze and compare the use of different optimization schemes inside the DIP framework for the denoising task.


2021 - Combining Weighted Total Variation and Deep Image Prior for natural and medical image restoration via ADMM [Relazione in Atti di Convegno]
Cascarano, P.; Sebastiani, A.; Comes, M. C.; Franchini, G.; Porta, F.
abstract

In the last decades, unsupervised deep learning based methods have caught researchers' attention, since in many real applications, such as medical imaging, collecting a large amount of training examples is not always feasible. Moreover, the construction of a good training set is time consuming and hard because the selected data have to be enough representative for the task. In this paper, we focus on the Deep Image Prior (DIP) framework and we propose to combine it with a space-variant Total Variation regularizer with an automatic estimation of the local regularization parameters. Differently from other existing approaches, we solve the arising minimization problem via the flexible Alternating Direction Method of Multipliers (ADMM). Furthermore, we provide a specific implementation also for the standard isotropic Total Variation. The promising performances of the proposed approach, in terms of PSNR and SSIM values, are addressed through several experiments on simulated as well as real natural and medical corrupted images.


2021 - Variable metric techniques for forward–backward methods in imaging [Articolo su rivista]
Bonettini, S.; Porta, F.; Ruggiero, V.; Zanni, L.
abstract

Variable metric techniques are a crucial ingredient in many first order optimization algorithms. In practice, they consist in a rule for computing, at each iteration, a suitable symmetric, positive definite scaling matrix to be multiplied to the gradient vector. Besides quasi-Newton BFGS techniques, which represented the state-of-the-art since the 70's, new approaches have been proposed in the last decade in the framework of imaging problems expressed in variational form. Such recent approaches are appealing since they can be applied to large scale problems without adding significant computational costs and they produce an impressive improvement in the practical performances of first order methods. These scaling strategies are strictly connected to the shape of the specific objective function and constraints of the optimization problem they are applied to; therefore, they are able to effectively capture the problem features. On the other side, this strict problem dependence makes difficult extending the existing techniques to more general problems. Moreover, in spite of the experimental evidence of their practical effectiveness, their theoretical properties are not well understood. The aim of this paper is to investigate these issues; in particular, we develop a unified framework for scaling techniques, multiplicative algorithms and the Majorization–Minimization approach. With this inspiration, we propose a scaling matrix rule for variable metric first order methods applied to nonnegatively constrained problems exploiting a suitable structure of the objective function. Finally, we evaluate the effectiveness of the proposed approach on some image restoration problems.


2020 - A Limited Memory Gradient Projection Method for Box-Constrained Quadratic Optimization Problems [Relazione in Atti di Convegno]
Crisci, S.; Porta, F.; Ruggiero, V.; Zanni, L.
abstract

Gradient Projection (GP) methods are a very popular tool to address box-constrained quadratic problems thanks to their simple implementation and low computational cost per iteration with respect, for example, to Newton approaches. It is however possible to include, in GP schemes, some second order information about the problem by means of a clever choice of the steplength parameter which controls the decrease along the anti-gradient direction. Borrowing the analysis developed by Barzilai and Borwein (BB) for an unconstrained quadratic programming problem, in 2012 Roger Fletcher proposed a limited memory steepest descent (LMSD) method able to effectively sweep the spectrum of the Hessian matrix of the quadratic function to optimize. In this work we analyze how to extend the Fletcher’s steplength selection rule to GP methods employed to solve box-constrained quadratic problems. Particularly, we suggest a way to take into account the lower and the upper bounds in the steplength definition, providing also a theoretical and numerical evaluation of our approach.


2020 - Spectral properties of barzilai-borwein rules in solving singly linearly constrained optimization problems subject to lower and upper bounds [Articolo su rivista]
Crisci, S.; Porta, F.; Ruggiero, V.; Zanni, L.
abstract

In 1988, Barzilai and Borwein published a pioneering paper which opened the way to inexpensively accelerate first-order. In more detail, in the framework of unconstrained optimization, Barzilai and Borwein developed two strategies to select the step length in gradient descent methods with the aim of encoding some second-order information of the problem without computing and/or employing the Hessian matrix of the objective function. Starting from these ideas, several effcient step length techniques have been suggested in the last decades in order to make gradient descent methods more and also more appealing for problems which handle large-scale data and require real- time solutions. Typically, these new step length selection rules have been tuned in the quadratic unconstrained framework for sweeping the spectrum of the Hessian matrix, and then applied also to nonquadratic constrained problems, without any substantial modification, by showing them to be very effiective anyway. In this paper, we deeply analyze how, in quadratic and nonquadratic mini- mization problems, the presence of a feasible region, expressed by a single linear equality constraint together with lower and upper bounds, inuences the spectral properties of the original Barzilai-Borwein (BB) rules, generalizing recent results provided for box-constrained quadratic problems. This analysis gives rise to modified BB approaches able not only to capture second-order informa- tion but also to exploit the nature of the feasible region. We show the benefits gained by the new step length rules on a set of test problems arising also from machine learning and image processing applications.


2019 - Recent advances in variable metric first-order methods [Capitolo/Saggio]
Bonettini, S.; Porta, F.; Prato, M.; Rebegoldi, S.; Ruggiero, V.; Zanni, L.
abstract

Minimization problems often occur in modeling phenomena dealing with real-life applications that nowadays handle large-scale data and require real-time solutions. For these reasons, among all possible iterative schemes, first-order algorithms represent a powerful tool in solving such optimization problems since they admit a relatively simple implementation and avoid onerous computations during the iterations. On the other hand, a well known drawback of these methods is a possible poor convergence rate, especially showed when an high accurate solution is required. Consequently, the acceleration of first-order approaches is a very discussed field which has experienced several efforts from many researchers in the last decades. The possibility of considering a variable underlying metric changing at each iteration and aimed to catch local properties of the starting problem has been proved to be effective in speeding up first-order methods. In this work we deeply analyze a possible way to include a variable metric in first-order methods for the minimization of a functional which can be expressed as the sum of a differentiable term and a nondifferentiable one. Particularly, the strategy discussed can be realized by means of a suitable sequence of symmetric and positive definite matrices belonging to a compact set, together with an Armijo-like linesearch procedure to select the steplength along the descent direction ensuring a sufficient decrease of the objective function.


2018 - A nonsmooth regularization approach based on shearlets for Poisson noise removal in ROI tomography [Articolo su rivista]
Bubba, Tatiana Alessandra; Porta, Federica; Zanghirati, Gaetano; Bonettini, Silvia
abstract

Due to its potential to lower exposure to X-ray radiation and reduce the scanning time, region-of-interest (ROI) computed tomography (CT) is particularly appealing for a wide range of biomedical applications. To overcome the severe ill-posedness caused by the truncation of projection measurements, ad hoc strategies are required, since traditional CT reconstruction algorithms result in instability to noise, and may give inaccurate results for small ROI. To handle this difficulty, we propose a nonsmooth convex optimization model based on ℓ1 shearlet regularization, whose solution is addressed by means of the variable metric inexact line search algorithm (VMILA), a proximal-gradient method that enables the inexact computation of the proximal point defining the descent direction. We compare the reconstruction performance of our strategy against a smooth total variation (sTV) approach, by using both Poisson noisy simulated data and real data from fan-beam CT geometry. The results show that, while for synthetic data both shearets and sTV perform well, for real data, the proposed nonsmooth shearlet-based approach outperforms sTV, since the localization and directional properties of shearlets allow to detect finer structures of a textured image. Finally, our approach appears to be insensitive to the ROI size and location.


2018 - Serial and parallel approaches for image segmentation by numerical minimization of a second-order functional [Articolo su rivista]
Zanella, Riccardo; Porta, F.; Ruggiero, Valeria; Zanetti, M.
abstract

Because of its attractive features, second order segmentation has shown to be a promising tool in remote sensing. A known drawback about its implementation is computational complexity, above all for large set of data. Recently in Zanetti et al. [1], an efficient version of the block-coordinate descent algorithm (BCDA) has been proposed for the minimization of a second order elliptic approximation of the Blake–Zissermann functional. Although the parallelization of linear algebra operations is expected to increase the performance of BCDA when addressing the segmentation of large-size gridded data (e.g., full-scene images or Digital Surface Models (DSMs)), numerical evidence shows that this is not sufficient to get significant reduction of computational time. Therefore a novel approach is proposed which exploits a decomposition technique of the image domain into tiles. The solution can be computed by applying BCDA on each tile in parallel way and combining the partial results corresponding to the different blocks of variables through a proper interconnection rule. We prove that this parallel method (OPARBCDA) generates a sequence of iterates which converges to a critical point of the functional on the level set devised by the starting point. Furthermore, we show that the parallel method can be efficiently implemented even in a commodity multicore CPU. Numerical results are provided to evaluate the efficiency of the parallel scheme on large images in terms of computational cost and its effectiveness with respect to the behavior on the tile junctions.


2017 - On the convergence of a linesearch based proximal-gradient method for nonconvex optimization [Articolo su rivista]
Bonettini, Silvia; Loris, Ignace; Porta, Federica; Prato, Marco; Rebegoldi, Simone
abstract

We consider a variable metric linesearch based proximal gradient method for the minimization of the sum of a smooth, possibly nonconvex function plus a convex, possibly nonsmooth term. We prove convergence of this iterative algorithm to a critical point if the objective function satisfies the Kurdyka- Lojasiewicz property at each point of its domain, under the assumption that a limit point exists. The proposed method is applied to a wide collection of image processing problems and our numerical tests show that our algorithm results to be flexible, robust and competitive when compared to recently proposed approaches able to address the optimization problems arising in the considered applications.


2017 - Runge–Kutta-like scaling techniques for first-order methods in convex optimization [Articolo su rivista]
Porta, Federica; Cornelio, Anastasia; Ruggiero, Valeria
abstract

It is well known that there is a strong connection between time integration and convex optimization. In this work, inspired by the equivalence between the forward Euler scheme and the gradient descent method, we broaden our analysis to the family of Runge–Kutta methods and show that they enjoy a natural interpretation as first-order optimization algorithms. The strategies intrinsically suggested by Runge–Kutta methods are exploited in order to detail novel proposal for either scaling or preconditioning gradient-like approaches, whose convergence is ensured by the stability condition for Runge–Kutta schemes. The theoretical analysis is supported by the numerical experiments carried out on some test problems arising from suitable applications where the proposed techniques can be efficiently employed.


2016 - A Variable Metric Forward-Backward Method with Extrapolation [Articolo su rivista]
Bonettini, Silvia; Porta, Federica; Ruggiero, V.
abstract

Forward-backward methods are a very useful tool for the minimization of a functional given by the sum of a differentiable term and a nondifferentiable one, and their investigation has comprised several efforts from many researchers in the last decade. In this paper we focus on the convex case and, inspired by recent approaches for accelerating first-order iterative schemes, we develop a scaled inertial forward-backward algorithm which is based on a metric changing at each iteration and on a suitable extrapolation step. Unlike standard forward-backward methods with extrapolation, our scheme is able to handle functions whose domain is not the entire space. Both an O(1/k^2) convergence rate estimate on the objective function values and the convergence of the sequence of the iterates are proved. Numerical experiments on several test problems arising from image processing, compressed sensing, and statistical inference show the effectiveness of the proposed method in comparison to well-performing state-of-the-art algorithms.


2016 - On the constrained minimization of smooth Kurdyka– Lojasiewicz functions with the scaled gradient projection method [Relazione in Atti di Convegno]
Prato, Marco; Bonettini, Silvia; Loris, Ignace; Porta, Federica; Rebegoldi, Simone
abstract

The scaled gradient projection (SGP) method is a first-order optimization method applicable to the constrained minimization of smooth functions and exploiting a scaling matrix multiplying the gradient and a variable steplength parameter to improve the convergence of the scheme. For a general nonconvex function, the limit points of the sequence generated by SGP have been proved to be stationary, while in the convex case and with some restrictions on the choice of the scaling matrix the sequence itself converges to a constrained minimum point. In this paper we extend these convergence results by showing that the SGP sequence converges to a limit point provided that the objective function satisfies the Kurdyka– Lojasiewicz property at each point of its domain and its gradient is Lipschitz continuous.


2016 - The ROI CT problem: a shearlet-based regularization approach [Relazione in Atti di Convegno]
Bubba, TATIANA ALESSANDRA; Porta, Federica; Zanghirati, Gaetano; Bonettini, Silvia
abstract

The possibility to significantly reduce the X-ray radiation dose and shorten the scanning time is particularly appealing, especially for the medical imaging community. Region-of-interest Computed Tomography (ROI CT) has this potential and, for this reason, is currently receiving increasing attention. Due to the truncation of projection images, ROI CT is a rather challenging problem. Indeed, the ROI reconstruction problem is severely ill-posed in general and naive local reconstruction algorithms tend to be very unstable. To obtain a stable and reliable reconstruction, under suitable noise circumstances, we formulate the ROI CT problem as a convex optimization problem with a regularization term based on shearlets, and possibly nonsmooth. For the solution, we propose and analyze an iterative approach based on the variable metric inexact line-search algorithm (VMILA). The reconstruction performance of VMILA is compared against different regularization conditions, in the case of fan-beam CT simulated data. The numerical tests show that our approach is insensitive to the location of the ROI and remains very stable also when the ROI size is rather small.


2016 - Variable metric inexact line-search based methods for nonsmooth optimization [Articolo su rivista]
Bonettini, Silvia; Loris, Ignace; Porta, Federica; Prato, Marco
abstract

We develop a new proximal--gradient method for minimizing the sum of a differentiable, possibly nonconvex, function plus a convex, possibly non differentiable, function. The key features of the proposed method are the definition of a suitable descent direction, based on the proximal operator associated to the convex part of the objective function, and an Armijo--like rule to determine the step size along this direction ensuring the sufficient decrease of the objective function. In this frame, we especially address the possibility of adopting a metric which may change at each iteration and an inexact computation of the proximal point defining the descent direction. For the more general nonconvex case, we prove that all limit points of the iterates sequence are stationary, while for convex objective functions we prove the convergence of the whole sequence to a minimizer, under the assumption that a minimizer exists. In the latter case, assuming also that the gradient of the smooth part of the objective function is Lipschitz, we also give a convergence rate estimate, showing the O(1/k) complexity with respect to the function values. We also discuss verifiable sufficient conditions for the inexact proximal point and we present the results of two numerical tests on total variation based image restoration problems, showing that the proposed approach is competitive with other state-of-the-art methods.


2015 - A convergent least-squares regularized blind deconvolution approach [Articolo su rivista]
Cornelio, Anastasia; Porta, Federica; Prato, Marco
abstract

The aim of this work is to present a new and efficient optimization method for the solution of blind deconvolution problems with data corrupted by Gaussian noise, which can be reformulated as a constrained minimization problem whose unknowns are the point spread function (PSF) of the acquisition system and the true image. The objective function we consider is the weighted sum of the least-squares fit-to-data discrepancy and possible regularization terms accounting for specific features to be preserved in both the image and the PSF. The solution of the corresponding minimization problem is addressed by means of a proximal alternating linearized minimization (PALM) algorithm, in which the updating procedure is made up of one step of a gradient projection method along the arc and the choice of the parameter identifying the steplength in the descent direction is performed automatically by exploiting the optimality conditions of the problem. The resulting approach is a particular case of a general scheme whose convergence to stationary points of the constrained minimization problem has been recently proved. The effectiveness of the iterative method is validated in several numerical simulations in image reconstruction problems.


2015 - A new steplength selection for scaled gradient methods with application to image deblurring [Articolo su rivista]
Porta, Federica; Prato, Marco; Zanni, Luca
abstract

Gradient methods are frequently used in large scale image deblurring problems since they avoid the onerous computation of the Hessian matrix of the objective function. Second order information is typically sought by a clever choice of the steplength parameter defining the descent direction, as in the case of the well-known Barzilai and Borwein rules. In a recent paper, a strategy for the steplength selection approximating the inverse of some eigenvalues of the Hessian matrix has been proposed for gradient methods applied to unconstrained minimization problems. In the quadratic case, this approach is based on a Lanczos process applied every m iterations to the matrix of the gradients computed in the previous m iterations, but the idea can be extended to a general objective function. In this paper we extend this rule to the case of scaled gradient projection methods applied to constrained minimization problems, and we test the effectiveness of the proposed strategy in image deblurring problems in both the presence and the absence of an explicit edge-preserving regularization term.


2015 - Limited-memory scaled gradient projection methods for real-time image deconvolution in microscopy [Articolo su rivista]
Porta, Federica; Zanella, R.; Zanghirati, G.; Zanni, Luca
abstract

Gradient projection methods have given rise to effective tools for image deconvolution in several relevant areas, such as microscopy, medical imaging and astronomy. Due to the large scale of the optimization problems arising in nowadays imaging applications and to the growing request of real-time reconstructions, an interesting challenge to be faced consists in designing new acceleration techniques for the gradient schemes, able to preserve their simplicity and low computational cost of each iteration. In this work we propose an acceleration strategy for a state-of-the-art scaled gradient projection method for image deconvolution in microscopy. The acceleration idea is derived by adapting a steplength selection rule, recently introduced for limited-memory steepest descent methods in unconstrained optimization, to the special constrained optimization framework arising in image reconstruction. We describe how important issues related to the generalization of the step-length rule to the imaging optimization problem have been faced and we evaluate the improvements due to the acceleration strategy by numerical experiments on large-scale image deconvolution problems.


2015 - On some steplength approaches for proximal algorithms [Articolo su rivista]
Porta, Federica; Loris, Ignace
abstract

We discuss a number of novel steplength selection schemes for proximal-based convex optimization algorithms. In particular, we consider the problem where the Lipschitz constant of the gradient of the smooth part of the objective function is unknown. We generalize two optimization algorithms of Khobotov type and prove convergence. We also take into account possible inaccurate computation of the proximal operator of the non-smooth part of the objective function. Secondly, we show convergence of an iterative algorithm with Armijo-type steplength rule, and discuss its use with an approximate computation of the proximal operator. Numerical experiments show the efficiency of the methods in comparison to some existing schemes.


2013 - Filter factor analysis of scaled gradient methods for linear least squares [Relazione in Atti di Convegno]
Porta, F.; Cornelio, A.; Zanni, L.; Prato, M.
abstract

A typical way to compute a meaningful solution of a linear least squares problem involves the introduction of a filter factors array, whose aim is to avoid noise amplification due to the presence of small singular values. Beyond the classical direct regularization approaches, iterative gradient methods can be thought as filtering methods, due to their typical capability to recover the desired components of the true solution at the first iterations. For an iterative method, regularization is achieved by stopping the procedure before the noise introduces artifacts, making the iteration number playing the role of the regularization parameter. In this paper we want to investigate the filtering and regularizing effects of some first-order algorithms, showing in particular which benefits can be gained in recovering the filters of the true solution by means of a suitable scaling matrix.


2013 - On the filtering effect of iterative regularization algorithms for discrete inverse problems [Articolo su rivista]
Cornelio, Anastasia; Porta, Federica; Prato, Marco; Zanni, Luca
abstract

Many real-world applications are addressed through a linear least-squares problem formulation, whose solution is calculated by means of an iterative approach. A huge amount of studies has been carried out in the optimization field to provide the fastest methods for the reconstruction of the solution, involving choices of adaptive parameters and scaling matrices. However, in presence of an ill-conditioned model and real data, the need of a regularized solution instead of the least-squares one changed the point of view in favour of iterative algorithms able to combine a fast execution with a stable behaviour with respect to the restoration error. In this paper we analyze some classical and recent gradient approaches for the linear least-squares problem by looking at their way of filtering the singular values, showing in particular the effects of scaling matrices and non-negative constraints in recovering the correct filters of the solution. An original analysis of the filtering effect for the image deblurring problem with Gaussian noise on the data is also provided.