Nuova ricerca

GIANPAOLO BONTEMPO

Dottorando
Dipartimento di Ingegneria "Enzo Ferrari"


Home |


Pubblicazioni

2024 - A Graph-Based Multi-Scale Approach with Knowledge Distillation for WSI Classification [Articolo su rivista]
Bontempo, Gianpaolo; Bolelli, Federico; Porrello, Angelo; Calderara, Simone; Ficarra, Elisa
abstract

The usage of Multi Instance Learning (MIL) for classifying Whole Slide Images (WSIs) has recently increased. Due to their gigapixel size, the pixel-level annotation of such data is extremely expensive and time-consuming, practically unfeasible. For this reason, multiple automatic approaches have been raised in the last years to support clinical practice and diagnosis. Unfortunately, most state-of-the-art proposals apply attention mechanisms without considering the spatial instance correlation and usually work on a single-scale resolution. To leverage the full potential of pyramidal structured WSI, we propose a graph-based multi-scale MIL approach, DAS-MIL. Our model comprises three modules: i) a self-supervised feature extractor, ii) a graph-based architecture that precedes the MIL mechanism and aims at creating a more contextualized representation of the WSI structure by considering the mutual (spatial) instance correlation both inter and intra-scale. Finally, iii) a (self) distillation loss between resolutions is introduced to compensate for their informative gap and significantly improve the final prediction. The effectiveness of the proposed framework is demonstrated on two well-known datasets, where we outperform SOTA on WSI classification, gaining a +2.7% AUC and +3.7% accuracy on the popular Camelyon16 benchmark.


2023 - Buffer-MIL: Robust Multi-instance Learning with a Buffer-Based Approach [Relazione in Atti di Convegno]
Bontempo, G.; Lumetti, L.; Porrello, A.; Bolelli, F.; Calderara, S.; Ficarra, E.
abstract

Histopathological image analysis is a critical area of research with the potential to aid pathologists in faster and more accurate diagnoses. However, Whole-Slide Images (WSIs) present challenges for deep learning frameworks due to their large size and lack of pixel-level annotations. Multi-Instance Learning (MIL) is a popular approach that can be employed for handling WSIs, treating each slide as a bag composed of multiple patches or instances. In this work we propose Buffer-MIL, which aims at tackling the covariate shift and class imbalance characterizing most of the existing histopathological datasets. With this goal, a buffer containing the most representative instances of each disease-positive slide of the training set is incorporated into our model. An attention mechanism is then used to compare all the instances against the buffer, to find the most critical ones in a given slide. We evaluate Buffer-MIL on two publicly available WSI datasets, Camelyon16 and TCGA lung cancer, outperforming current state-of-the-art models by 2.2% of accuracy on Camelyon16.


2023 - DAS-MIL: Distilling Across Scales for MILClassification of Histological WSIs [Relazione in Atti di Convegno]
Bontempo, Gianpaolo; Porrello, Angelo; Bolelli, Federico; Calderara, Simone; Ficarra, Elisa
abstract

The adoption of Multi-Instance Learning (MIL) for classifying Whole-Slide Images (WSIs) has increased in recent years. Indeed, pixel-level annotation of gigapixel WSI is mostly unfeasible and time-consuming in practice. For this reason, MIL approaches have been profitably integrated with the most recent deep-learning solutions for WSI classification to support clinical practice and diagnosis. Nevertheless, the majority of such approaches overlook the multi-scale nature of the WSIs; the few existing hierarchical MIL proposals simply flatten the multi-scale representations by concatenation or summation of features vectors, neglecting the spatial structure of the WSI. Our work aims to unleash the full potential of pyramidal structured WSI; to do so, we propose a graph-based multi-scale MIL approach, termed DAS-MIL, that exploits message passing to let information flows across multiple scales. By means of a knowledge distillation schema, the alignment between the latent space representation at different resolutions is encouraged while preserving the diversity in the informative content. The effectiveness of the proposed framework is demonstrated on two well-known datasets, where we outperform SOTA on WSI classification, gaining a +1.9% AUC and +3.3¬curacy on the popular Camelyon16 benchmark.


2023 - Enhancing PFI Prediction with GDS-MIL: A Graph-based Dual Stream MIL Approach [Relazione in Atti di Convegno]
Bontempo, Gianpaolo; Bartolini, Nicola; Lovino, Marta; Bolelli, Federico; Virtanen, Anni; Ficarra, Elisa
abstract

Whole-Slide Images (WSI) are emerging as a promising resource for studying biological tissues, demonstrating a great potential in aiding cancer diagnosis and improving patient treatment. However, the manual pixel-level annotation of WSIs is extremely time-consuming and practically unfeasible in real-world scenarios. Multi-Instance Learning (MIL) have gained attention as a weakly supervised approach able to address lack of annotation tasks. MIL models aggregate patches (e.g., cropping of a WSI) into bag-level representations (e.g., WSI label), but neglect spatial information of the WSIs, crucial for histological analysis. In the High-Grade Serous Ovarian Cancer (HGSOC) context, spatial information is essential to predict a prognosis indicator (the Platinum-Free Interval, PFI) from WSIs. Such a prediction would bring highly valuable insights both for patient treatment and prognosis of chemotherapy resistance. Indeed, NeoAdjuvant ChemoTherapy (NACT) induces changes in tumor tissue morphology and composition, making the prediction of PFI from WSIs extremely challenging. In this paper, we propose GDS-MIL, a method that integrates a state-of-the-art MIL model with a Graph ATtention layer (GAT in short) to inject a local context into each instance before MIL aggregation. Our approach achieves a significant improvement in accuracy on the ``Ome18'' PFI dataset. In summary, this paper presents a novel solution for enhancing PFI prediction in HGSOC, with the potential of significantly improving treatment decisions and patient outcomes.


2023 - Neuro Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal [Working paper]
Marconato, Emanuele; Bontempo, Gianpaolo; Ficarra, Elisa; Calderara, Simone; Passerini, Andrea; Teso, Stefano
abstract


2022 - Catastrophic Forgetting in Continual Concept Bottleneck Models [Relazione in Atti di Convegno]
Marconato, E.; Bontempo, G.; Teso, S.; Ficarra, E.; Calderara, S.; Passerini, A.
abstract


2022 - FusionFlow: an integrated system workflow for gene fusion detection in genomic samples [Relazione in Atti di Convegno]
Citarrella, Francesca; Bontempo, Gianpaolo; Lovino, Marta; Ficarra, Elisa
abstract


2020 - Multi-omics Classification on Kidney Samples Exploiting Uncertainty-Aware Models [Relazione in Atti di Convegno]
Lovino, Marta; Bontempo, Gianpaolo; Cirrincione, Giansalvo; Ficarra, Elisa
abstract

Due to the huge amount of available omic data, classifying samples according to various omics is a complex process. One of the most common approaches consists of creating a classifier for each omic and subsequently making a consensus among the classifiers that assign to each sample the most voted class among the outputs on the individual omics. However, this approach does not consider the confidence in the prediction ignoring that biological information coming from a certain omic may be more reliable than others. Therefore, it is here proposed a method consisting of a tree-based multi-layer perceptron (MLP), which estimates the class-membership probabilities for classification. In this way, it is not only possible to give relevance to all the omics, but also to label as Unknown those samples for which the classifier is uncertain in its prediction. The method was applied to a dataset composed of 909 kidney cancer samples for which these three omics were available: gene expression (mRNA), microRNA expression (miRNA), and methylation profiles (meth) data. The method is valid also for other tissues and on other omics (e.g. proteomics, copy number alterations data, single nucleotide polymorphism data). The accuracy and weighted average f1-score of the model are both higher than 95%. This tool can therefore be particularly useful in clinical practice, allowing physicians to focus on the most interesting and challenging samples.