Nuova ricerca

ELISA PRATI


Home | Curriculum(pdf) |


Pubblicazioni

2023 - Ciao AI: the Italian adaptation and validation of the Chatbot Usability Scale [Articolo su rivista]
Borsci, S.; Prati, E.; Malizia, A.; Schmettow, M.; Chamberlain, A.; Federici, S.
abstract

Chatbot-based tools are becoming pervasive in multiple domains from commercial websites to rehabilitation applications. Only recently, an eleven-item satisfaction inventory was developed (the ChatBot Usability Scale, BUS-11) to help designers in the assessment process of their systems. The BUS-11 has been validated in multiple contexts and languages, i.e., English, German, Dutch, and Spanish. This scale forms a solid platform enabling designers to rapidly assess chatbots both during and after the design process. The present work aims to adapt and validate the BUS-11 inventory in Italian. A total of 1360 questionnaires were collected which related to a total of 10 Italian chatbot-based systems using the BUS-11 inventory and also using the lite version of the Usability Metrics for User eXperience for convergent validity purposes. The Italian version of the BUS-11 was adapted in terms of the wording of one item, and a Multi-Group Confirmatory Factorial Analysis was performed to establish the factorial structure of the scale and compare the effects of the wording adaptation. Results indicate that the adapted Italian version of the scale matches the expected factorial structure of the original scale. The Italian BUS-11 is highly reliable (Cronbach alpha: 0.921), and it correlates to other measures of satisfaction (e.g., UMUX-Lite, τb = 0.67; p < .001) by also offering specific insights regarding the chatbots’ characteristics. The Italian BUS-11 can be confidently used by chatbot designers to assess the satisfaction of their users during formative or summative tests.


2023 - Design Guidelines Towards 4.0 HMIs: How to Translate Physical Buttons in Digital Buttons [Relazione in Atti di Convegno]
Prati, Elisa; Contini, Giuditta; Peruzzini, Margherita
abstract

The fourth industrial revolution (known as Industry 4.0) has simplified the access to new smart technologies, which are even more adopted by companies in their manufacturing machines. These technologies (e.g., Internet of Things) open new evolutionary scenarios for industries and the whole production process, such as the use of big data for production process optimization. At the same time, also a Human-Machine Interface (HMI) evolution is required to manage and effectively exploit the new machines advantages. Currently, different industrial HMIs are still physical based (e.g., buttons, levers) and do not properly respond to the new opportunities offered by the 4.0 technologies, limiting the whole production evolution. The HMIs’ evolution requires a proper design approach that considers the new machine possibilities (e.g., real time data analysis), the new interaction requirements and the users’ needs in the new work scenario. However, a lack of indications to guide this redesign process emerged. In this paper is presented a list of design guidelines conceived during a project regarding the HMI redesign of an automatic production line. Specifically, the project focuses on the translation of physical buttons to digital ones in a graphic interface. The case study brought out that there are many aspects to consider during the design process toward new 4.0 HMIs, and specific methodologies are necessary to develop intuitive and clear HMIs. Providing this applicative example, the paper aims to fill the current gap of indication to face the HMIs evolution and redesign. In particular, the developed guidelines are described to make clear how to adopt them to solve similar use cases and as a support for the design teams.


2022 - A Systematic Literature Review of User Experience Evaluation Scales for Human-Robot Collaboration [Relazione in Atti di Convegno]
Prati, Elisa; Borsci, Simone; Peruzzini, Margherita; Pellicciari, Marcello
abstract

In the last decade, the field of Human-Robot Collaboration (HRC) has received much attention from both research institutions and industries. Robot technologies are in fact deployed in many different areas (e.g., industrial processes, people assistance) to support an effective collaboration between humans and robots. In this transdisciplinary context, User eXperience (UX) has inevitably to be considered to achieve an effective HRC, namely to allow the robots to better respond to the users’ needs and thus improve the interaction quality. The present paper reviews the evaluation scales used in HRC scenarios, focusing on the application context and evaluated aspects. In particular, a systematic review was conducted based on the following questions: (RQ1) which evaluation scales are adopted within the HRI scenario with collaborative tasks?, and (RQ2) how the UX and user satisfaction are assessed?. The records analysis highlighted that the UX aspects are not sufficiently examined in the current HRC design practice, particularly in the industrial field. This is most likely due to a lack of standardized scales. To respond to this recognized need, a set of dimensions to be considered in a new UX evaluation scale were proposed.


2022 - A comprehensive UX index to evaluate industrial tasks from a human-centered perspective [Relazione in Atti di Convegno]
Khamaisi, R. K.; Grandi, F.; Prati, E.; Peruzzini, M.; Pellicciari, M.
abstract

Recent advances in physiological monitoring devices have supported the diffusion of a human-centric approach also within industrial contexts, where often severe working conditions limit the analysis of the operators’ User eXperience (UX). Several methodologies have been presented to the scientific community to assess the overall UX of workers performing industrial operations. These methodologies have also tried to encompass the diverse aspects of the physiological response (e.g., mental workload, stress conditions and postural overloads). The current study aims to refine a unique and comprehensive UX index to identify the specific causes of the user discomfort in advance and to optimize the overall system design. A full set of non-invasive wearable devices was applied to a virtual reality (VR) simulation while performing manual operations to collect relevant physiological parameters and to finally assess the overall UX. The results demonstrated the effectiveness of the proposed index in anticipating the operator's critical conditions by specifying the possible causes of the ergonomic discomfort. Future works will focus on investigating the theoretical foundation of proposed solution and on providing a statistical validation on a larger population.


2022 - Creation of a UX index to design human tasks and workstations [Articolo su rivista]
Grandi, F.; Peruzzini, M.; Cavallaro, S.; Prati, E.; Pellicciari, M.
abstract

Successful interaction with complex processes, like those in the modern factory, is based on the system’s ability to satisfy the user needs during human tasks, mainly related to performances, physical comfort, usability, accessibility, visibility, and mental workload. However, the ‘real’ user perception is hidden and usually difficult to detect. User eXperience (UX) is a useful concept related to subjective perceptions and responses that result from the interaction with a product, system or process, including users’ emotions, beliefs, preferences, perceptions, physical and psychological responses, behaviors and accomplishments that occur before, during and after use. The paper proposes the creation of a User eXperience Index (UXI) to assess the quality of human-system interaction during job tasks and, consequently, evaluate both process and workstation. The proposed approach has been applied to improve the design of assembly human tasks, using a virtual simulated case study focusing on tractor assembly. Tests with users, with different levels of expertise, allowed us to validate the proposed approach and to optimize the assembly task sequence. Results showed how the proposed UXI can validly objectify the workers’ experience and can be validly used to improve the design of human tasks.


2022 - Design of ergonomic dashboards for tractors and trucks: innovative method and tools [Articolo su rivista]
Grandi, F.; Prati, E.; Peruzzini, M.; Pellicciari, M.; Campanella, C. E.
abstract

Designing highly usable and ergonomic dashboards is fundamental to support users in managing and properly setting complex vehicles, like trains, airplanes, trucks and tractors. Contrarily, control dashboards are usually intrusive, full of controls and not really intuitive or usable. This paper focuses on the design of ergonomic and usable dashboard for specific classes of vehicles, like tractors and trucks. Indeed, trucks and tractors are both vehicles and operating machines, and their control is particularly complex. Indeed, the driver contemporary drives and checks if the machine is working properly. The paper proposes an innovative methodology to design highly usable and compact dashboards inspired by human-centered design and ergonomics principles. The study started by shifting the attention from the machine performance, that is the conventional engineering approach, to the human-system interaction quality, according to a new, transdisciplinary approach. The methodology proposes to combine virtual simulations with human performance analysis to support the design at different stages, from concept generation to detailed design, until testing with users. The methodology uses virtual environments to create digital twins of both driver and controls, making users interact with virtual items and predict the type and nature of interaction. Within virtual scenarios, different configurations of dashboard controls can be easily compared and tested, checking the frequency of use of each control and measuring the achieved human performance related to postural comfort and mental workload. The study adopted the proposed methodology to two industrial use cases focusing on the design of ergonomic dashboards: the former is referred to tractor dashboard and armrest, the latter refers to truck dashboard and seat. Both cases demonstrated that the new methodology allowed improved comfort, higher usability, higher visibility and accessibility, better performance and reduced time for machine control. The study demonstrates how a multidisciplinary user information integration can drive design optimization.


2022 - UX Evaluation of a Tractor Cabin Digital Twin Using Mixed Reality [Relazione in Atti di Convegno]
Cavallaro, Sara; Prati, Elisa; Grandi, Fabio; Mangia, Giancarlo; Pellicciari, Marcello; Peruzzini, Margherita
abstract

Understanding user experience (UX) is essential to design engaging and attractive products, so nowadays has emerged an increasingly interest in user- centred design approach; in this perspective, digital technologies such as Virtual Reality (VR) and Mixed Reality (MR) could help designers and engineers to create a digital prototype through which the user feedback can be considered during the product design stage. This research aims at creating an interactive Digital Twin (DT) using MR to enable a tractor driving simulation and involve real users to carry out an early UX evaluation, with the scope to validate the design of the control dashboard through a transdisciplinary approach. MR combines virtual simulation with real physical hardware devices which the user can interact with and have control through both visual and tactile feedback. The result is a MR simulator that combines virtual contents and physical controls, capable of reproducing a plowing activity close to reality. The principles of UX design was applied to this research for a continuous and dynamic UX evaluation during the project development.


2022 - Use of Interaction Design Methodologies for Human-Robot Collaboration in Industrial Scenarios [Articolo su rivista]
Prati, E; Villani, V; Grandi, F; Peruzzini, M; Sabattini, L
abstract

The key concept of collaborative robotics is represented by the presence of a strict interaction between a human user and the robotic system. As such, the study of the interaction is of paramount importance for a successful implementation of the system. In this article, we propose a novel approach to address the problem of designing a collaborative robotic system for industrial applications, focusing on the characteristics of the interaction. In particular, we will propose a set of methodologies focused on interaction design, inspired by those used for the design of user interfaces. These methodologies will allow the design of collaborative robotic systems following a user-centered approach, thus putting emphasis not only on safety and adaptability of the robotic systems (which have been widely addressed in the literature), but also on the interaction experience. While the proposed methodology was developed considering general collaborative robotics applications, two real industrial case studies were considered, to instantiate the considered framework and showcase its applicability to the real-world domain.


2021 - An approach based on VR to design industrial human-robot collaborative workstations [Articolo su rivista]
Prati, E.; Villani, V.; Peruzzini, M.; Sabattini, L.
abstract

This paper presents an integrated approach for the design of human-robot collaborative workstations in industrial shop floors. In particular, the paper presents how to use virtual reality (VR) technologies to support designers in the creation of interactive workstation prototypes and in early validation of design outcomes. VR allows designers to consider and evaluate in advance the overall user experience, adopting a user-centered perspective. The proposed approach relies on two levels: the first allows designers to have an automatic generation and organization of the workstation physical layout in VR, starting from a conceptual description of its functionalities and required tools; the second aims at supporting designers during the design of human-machine interfaces (HMIs) by interaction mapping, HMI prototyping and testing in VR. The proposed approach has been applied on two realistic industrial case studies related to the design of an intensive warehouse and a collaborative assembly workstation for automotive industry, respectively. The two case studies demonstrate how the approach is suited for early prototyping of complex environments and human-machine interactions by taking into account the user experience from the early phases of design.


2021 - E-commerce Usability Guidelines for Visually Impaired Users [Relazione in Atti di Convegno]
Prati, E.; Pozzi, S.; Grandi, F.; Peruzzini, M.
abstract

The growing diffusion of fashion e-commerce websites shows the appreciation by users, highlighting the importance of offering this service also to users with different disabilities. To this end, e-commerce should be not only accessible - implementing all the technical requirements for accessibility - but also usable, paying attention to the offered user experience. This study aims to investigate the current e-commerce usability considering visually impaired users’ navigation experience and understand which aspects define a good usability level for this target. An expert analysis of a set of fashion e-commerce websites and user testing were conducted, considering five different market segment categories. The analysis highlighted a gap in the consideration of visually impaired users’ navigation needs and style, as for instance non-uniformity of layout and page structure. All the findings have been structured in usability guidelines to favor the e-commerce usability improvement, with the goal of offering visually impaired users a better shopping experience.


2021 - How to include User eXperience in the design of Human-Robot Interaction [Articolo su rivista]
Prati, E.; Peruzzini, M.; Pellicciari, M.; Raffaeli, R.
abstract

In recent years Human-Robot Collaboration (HRC) has become a strategic research field, considering the emergent need for common collaborative execution of manufacturing tasks, shared between humans and robots within the modern factories. However, the majority of the research focuses on the technological aspects and enabling technologies, mainly directing to the robotic side, and usually neglecting the human factors. This work deals with including the needs of the humans interacting with robots in the design in human-robot interaction (HRI). In particular, the paper proposes a user experience (UX)-oriented structured method to investigate the human-robot dialogue to map the interaction with robots during the execution of shared tasks, and to finally elicit the requirements for the design of valuable HRI. The research adopted the proposed method to an industrial case focused on assembly operations supported by collaborative robots and AGVs (Automated Guided Vehicles). A multidisciplinary team was created to map the HRI for the specific case with the final aim to define the requirements for the design of the system interfaces. The novelty of the proposed approach is the inclusion of typically interaction design tools focusing in the analysis of the UX into the design of the system components, without merely focusing on the technological issues. Experimental results highlighted the validity of the proposed method to identify the interaction needs and to drive the interface design.


2021 - Usability Testing on Tractor’s HMI: A Study Protocol [Relazione in Atti di Convegno]
Prati, E.; Grandi, F.; Peruzzini, M.
abstract

The success of a human-machine interface (HMI) heavily depends on its usability. An highly usable interface allows the user to more easily achieve his/her goals and in general have a better User eXperience (UX). In work environments, a structured and ready-to-use usability testing protocol can encourage companies to carry out this type of study and focus on UX from the early design phases. Even though numerous methods to test usability exist, industrial companies still have great difficulties to apply them and choose the best ones for the specific purposes. They should be guided into the analysis by a universal step-by-step approach, which helps also not experienced designers selecting the most reliable and useful methods among the available ones. In this direction, the paper proposes a structured protocol to focus on UX and guide companies in testing setup, execution and debriefing in an easy and quick way. Checklists are defined to help during user testing and assure its success. As a consequence, end users can be easily involved to give an added value in design problems identification. The novelty of this paper is the definition of a ready-to-use study protocol that can also be used by non-usability experts, in order to make them familiar with UX analysis and extend this practice also in industrial HMI design. As validation, the proposed protocol was applied to the design of interfaces for agricultural tractors during two different stages of the HMI redesign process.


2021 - Ux in ar-supported industrial human–robot collaborative tasks: A systematic review [Articolo su rivista]
Khamaisi, R. K.; Prati, E.; Peruzzini, M.; Raffaeli, R.; Pellicciari, M.
abstract

The fourth industrial revolution is promoting the Operator 4.0 paradigm, originating from a renovated attention towards human factors, growingly involved in the design of modern, human-centered processes. New technologies, such as augmented reality or collaborative robotics are thus increasingly studied and progressively applied to solve the modern operators’ needs. Human-centered design approaches can help to identify user’s needs and functional requirements, solving usability issues, or reducing cognitive or physical stress. The paper reviews the recent literature on augmented reality-supported collaborative robotics from a human-centered perspective. To this end, the study analyzed 21 papers selected after a quality assessment procedure and remarks the poor adoption of user-centered approaches and methodologies to drive the development of human-centered augmented reality applications to promote an efficient collaboration between humans and robots. To remedy this deficiency, the paper ultimately proposes a structured framework driven by User eXperience approaches to design augmented reality interfaces by encompassing previous research works. Future developments are discussed, stimulating fruitful reflections and a decisive standardization process.