Nuova ricerca

KAVITHA ANGULURI


Home |


Pubblicazioni

2022 - Better under stress: Improving bacterial cellulose production by Komagataeibacter xylinus K2G30 (UMCC 2756) using adaptive laboratory evolution [Articolo su rivista]
Anguluri, K.; La China, S.; Brugnoli, M.; Cassanelli, S.; Gullo, M.
abstract

Among naturally produced polymers, bacterial cellulose is receiving enormous attention due to remarkable properties, making it suitable for a wide range of industrial applications. However, the low yield, the instability of microbial strains and the limited knowledge of the mechanisms regulating the metabolism of producer strains, limit the large-scale production of bacterial cellulose. In this study, Komagataeibacter xylinus K2G30 was adapted in mannitol based medium, a carbon source that is also available in agri-food wastes. K. xylinus K2G30 was continuously cultured by replacing glucose with mannitol (2% w/v) for 210 days. After a starting lag-phase, in which no changes were observed in the utilization of mannitol and in bacterial cellulose production (cycles 1-25), a constant improvement of the phenotypic performances was observed from cycle 26 to cycle 30, accompanied by an increase in mannitol consumption. At cycle 30, the end-point of the experiment, bacterial cellulose yield increased by 38% in comparision compared to cycle 1. Furthermore, considering the mannitol metabolic pathway, D-fructose is an intermediate in the bioconversion of mannitol to glucose. Based on this consideration, K. xylinus K2G30 was tested in fructose-based medium, obtaining the same trend of bacterial cellulose production observed in mannitol medium. The adaptive laboratory evolution approach used in this study was suitable for the phenotypic improvement of K. xylinus K2G30 in bacterial cellulose production. Metabolic versatility of the strain was confirmed by the increase in bacterial cellulose production from D-fructose-based medium. Moreover, the adaptation on mannitol did not occur at the expense of glucose, confirming the versatility of K2G30 in producing bacterial cellulose from different carbon sources. Results of this study contribute to the knowledge for designing new strategies, as an alternative to the genetic engineering approach, for bacterial cellulose production.


2022 - Candidate Acetic Acid Bacteria Strains for Levan Production [Articolo su rivista]
Anguluri, Kavitha; LA CHINA, Salvatore; Brugnoli, Marcello; DE VERO, Luciana; Pulvirenti, Andrea; Cassanelli, Stefano; Gullo, Maria
abstract

In this study, twelve strains of acetic acid bacteria (AAB) belonging to five different genera were tested for their ability to produce levan, at 70 and 250 g/L of sucrose concentration, respectively. The fructan produced by the bacterial strains was characterized as levan by NMR spectroscopy. Most of the strains produced levan, highlighting intra- and inter-species variability. High yield was observed for Neoasaia chiangmaiensis NBRC 101099 T, Kozakia baliensis DSM 14400 T and Gluconobacter cerinus DSM 9533 T at 70 g/L of sucrose. A 12-fold increase was observed for N. chiangmaiensis NBRC 101099 T at 250 g/L of sucrose concentration. Levan production was found to be affected by glucose accumulation and pH reduction, especially in Ko. baliensis DSM 14400 T. All the Gluconobacter strains showed a negative correlation with the increase in sucrose concentration. Among strains of Komagataeibacter genus, no clear effect of sucrose on levan yield was found. Results obtained in this study highlighted the differences in levan yield among AAB strains and showed interdependence between culture conditions, carbon source utilization, and time of incubation. On the contrary, the levan yield was not always related to the sucrose concentration.


2021 - Assessing effectiveness of Komagataeibacter strains for producing surface-microstructured cellulose via guided assembly-based biolithography. [Articolo su rivista]
Brugnoli, M.; Robotti, F.; China, La; Anguluri, K.; Haghighi, H.; Bottan, S.; Ferrari, A.; Gullo, M.
abstract

In this study, a medical device made of surface microstructured bacterial cellulose was produced using cellulose‑producing acetic acid bacteria wild‑type strains in combination with guided assembly‑based biolithography. The medical device aims at interfering with the cell’s focal adhesion establishment and maturation around implantable devices placed in soft tissues by the symmetrical array on its surface. A total of 25 Komagataeibacter strains was evaluated over a three‑step selection. In the first step, the ability of strains to produce a suitable bacterial cellulose layer with high production yield was examined, then nine strains, with a uniform and smooth layer of bacterial cellulose, were cultured in a custom‑made silicone bioreactor and finally the characteristics of the symmetrical array of topographic features on the surface were analysed. Selected strains showed high inter and intra species variability in bacterial cellulose production. The devices obtained by K2G30, K1G4, DSM 46590 (Komagataeibacter xylinus), K2A8 (Komagataeibacter sp.) and DSM 15973T (Komagataeibacter sucrofermentas) strains were pouched‑formed with hexagonal surface pattern required for reducing the formation of fibrotic tissue around devices, once they are implanted in soft tissues. Our findings revealed the effectiveness of the selected Komagataeibacter wild‑type strains in producing surface microstructured bacterial cellulose pouches for making biomedical devices.


2021 - Kombucha Tea as a Reservoir of Cellulose Producing Bacteria: Assessing Diversity among Komagataeibacter Isolates [Articolo su rivista]
LA CHINA, Salvatore; DE VERO, Luciana; Anguluri, Kavitha; Brugnoli, Marcello; Mamlouk, Dhouha; Gullo, Maria
abstract

Bacterial cellulose (BC) is receiving a great deal of attention due to its unique properties such as high purity, water retention capacity, high mechanical strength, and biocompatibility. However, the production of BC has been limited because of the associated high costs and low productivity. In light of this, the isolation of new BC producing bacteria and the selection of highly productive strains has become a prominent issue. Kombucha tea is a fermented beverage in which the bacteria fraction of the microbial community is composed mostly of strains belonging to the genus Komagataeibacter. In this study, Kombucha tea production trials were performed starting from a previous batch, and bacterial isolation was conducted along cultivation time. From the whole microbial pool, 46 isolates were tested for their ability to produce BC. The obtained BC yield ranged from 0.59 g/L, for the isolate K2G36, to 23 g/L for K2G30—which used as the reference strain. The genetic intraspecific diversity of the 46 isolates was investigated using two repetitive-sequence-based PCR typing methods: the enterobacterial repetitive intergenic consensus (ERIC) elements and the (GTG)5 sequences, respectively. The results obtained using the two different approaches revealed the suitability of the fingerprint techniques, showing a discrimination power, calculated as the D index, of 0.94 for (GTG)5 rep-PCR and 0.95 for ERIC rep-PCR. In order to improve the sensitivity of the applied method, a combined model for the two genotyping experiments was performed, allowing for the ability to discriminate among strains.


2021 - Mechanical and structural properties of environmental green composites based on functionalized bacterial cellulose [Articolo su rivista]
Barbi, S.; Taurino, C.; La China, S.; Anguluri, K.; Gullo, M.; Montorsi, M.
abstract

In this work TiO2 and highly inorganic ceramic clay were successfully immobilized into Bacterial Cellulose (BC), produced by Komagataeibacter xylinus K2G30 (UMCC 2756) strain, in different proportions. The morphology, structure, and mechanical properties of the composites, fabricated by wet mechanical mixing, were investigated through a multi-technique approach: density measurement, optical and electronic microscopy, FTIR spectroscopy, contact angle measurement and mechanical tensile testing, before and after aging, under UV light exposure. Results suggest completely different behavior by using TiO2 or Clay. In fact, porous fragile structures were obtained by employing Clay, whereas more compact and plastic-like specimen by using TiO2, due to different chemical bonding developed through H-bonding, as confirmed by FTIR. Enhanced tensile resistance at break was found for a content of TiO2 equal to 20 wt% and this result was not affected by aging, under UV light exposure. This study demonstrates how ceramic inorganic fillers for BC are able to act in completely different way, becoming of interests in different fields such as hydrophilic porous membranes for Clay and compact plastic-like film for textile industry with TiO2 addition.