Nuova ricerca

FRANCESCA FRAULINI

Dottorando
Dipartimento di Scienze Chimiche e Geologiche


Home |


Pubblicazioni

2023 - Ce-MBGs Loaded with Gentamicin: Characterization and In Vitro Evaluation [Articolo su rivista]
Fraulini, Francesca; Raimondi, Stefano; Candeliere, Francesco; Ranieri, Raffaella; Zambon, Alfonso; Lusvardi, Gigliola
abstract

Mesoporous Bioactive Glasses (MBGs) are biomaterials widely used in tissue engineering, particularly for hard tissue regeneration. One of the most frequent postoperative complications following a biomaterial surgical implant is a bacterial infection, which usually requires treatment by the systemic administration of drugs (e.g., antibiotics). In order to develop biomaterials with antibiotic properties, we investigated cerium-doped MBGs (Ce-MBGs) as in situ-controlled drug delivery systems (DDSs) of gentamicin (Gen), a wide spectrum antibiotic commonly employed against bacteria responsible of postoperative infections. Here we report the optimization of Gen loading on MBGs and the evaluation of the antibacterial properties and of retention of bioactivity and antioxidant properties of the resulting materials. The Gen loading (up to 7%) was found to be independent from cerium content, and the optimized Gen-loaded Ce-MBGs retain significant bioactivity and antioxidant properties. The antibacterial efficacy was verified up to 10 days of controlled release. These properties make Gen-loaded Ce-MBGs interesting candidates for simultaneous hard tissue regeneration and in situ antibiotic release.


2023 - Dual loaded Ce-MBGs with bioactivity, antioxidant and antibacterial properties [Articolo su rivista]
Zambon, Alfonso; Fraulini, Francesca; Raimondi, Stefano; Lusvardi, Gigliola
abstract


2022 - Investigation on the antimicrobial properties of cerium-doped bioactive glasses [Articolo su rivista]
Raimondi, S.; Zambon, A.; Ranieri, R.; Fraulini, F.; Amaretti, A.; Rossi, M.; Lusvardi, G.
abstract

Cerium-doped bioactive glasses (Ce-BGs) are implant materials that present high biocompatibility, modulate the levels of reactive oxygen species, and exert antimicrobial activity. The potential of BGs, 45S5, and K50S derived glasses doped with CeO2 (1.2, 3.6, and 5.3 mol%) to inhibit the growth of pathogen microbes was thoroughly investigated according to the ISO 22196:2011 method properly adapted. A significant reduction of the E. coli charge was detected in all glasses, including the BGs without cerium. The evolution of pH of the medium not inoculated following the immersion of the Ce-BGs was monitored. The presence of cerium did not affect markedly the pH trend, which increased rapidly for both compositions. The change of pH was strongly mitigated by the presence of 200 mM phosphate buffer pH 7.0 (PB) in the medium. In media buffered by PB, the growth of E. coli, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, and C. albicans was not affected by the presence of BGs doped or not with cerium, suggesting that the antibacterial activity of Ce-BGs is linked to the increase of environmental pH rather than to specific ion effects. However, Ce-BGs resulted promising biomaterials that associate low toxicity to normal cells to a considerable antimicrobial effect, albeit the latter is not directly associated with the presence of cerium.


2022 - Loading with Biomolecules Modulates the Antioxidant Activity of Cerium-Doped Bioactive Glasses [Articolo su rivista]
Lusvardi, Gigliola; Fraulini, Francesca; D'Addato, Sergio; Zambon, Alfonso
abstract

: In order to identify new bioactive glasses (BGs) with optimal antioxidant properties, we carried out an evaluation of a series of cerium-doped BGs [Ce-BGs─H, K, and mesoporous bioactive glasses (MBGs)] loaded with different biomolecules, namely, gallic acid, polyphenols (POLY), and anthocyanins. Quantification of loading at variable times highlighted POLY on MBGs as the system with the highest loading. The ability to dismutate hydrogen peroxide (catalase-like activity) of the BGs evaluated is strongly correlated with cerium doping, while it is marginally decreased compared to the parent BG upon loading with biomolecules. Conversely, unloaded Ce-BGs show only a marginal ability to dismutate the superoxide anion (SOD)-like activity, while upon loading with biomolecules, POLY in particular, the SOD-like activity is greatly enhanced for these materials. Doping with cerium and loading with biomolecules give complementary antioxidant properties to the BGs investigated; combined with the persistent bioactivity, this makes these materials prime candidates for upcoming studies on biological systems.


2021 - Cerium Containing Bioactive Glasses: A Review [Articolo su rivista]
Zambon, Alfonso; Malavasi, Gianluca; Pallini, Annalisa; Fraulini, Francesca; Lusvardi, Gigliola
abstract

Bioactive glasses (BGs) for biomedical applications are doped with therapeutic inorganic ions (TIIs) in order to improve their performance and reduce the side effects related to the surgical implant. Recent literature in the field shows a rekindled interest toward rare earth elements, in particular cerium, and their catalytic properties. Cerium-doped bioactive glasses (Ce-BGs) differ in compositions, synthetic methods, features, and in vitro assessment. This review provides an overview on the recent development of Ce-BGs for biomedical applications and on the evaluation of their bioactivity, cytocompatibility, antibacterial, antioxidant, and osteogenic and angiogenic properties as a function of their composition and physicochemical parameters.