Nuova ricerca

SARA GENTILE

Dottorando
Dipartimento di Scienze della Vita


Home |


Pubblicazioni

2023 - psnGPCRdb: The Structure-network Database of G Protein Coupled Receptors [Articolo su rivista]
Felline, A.; Gentile, S.; Fanelli, F.
abstract

G protein coupled receptors (GPCRs) are critical eukaryotic signal transduction gatekeepers and represent the largest protein superfamily in the human proteome, with more than 800 members. They share seven transmembrane helices organized in an up-down bundle architecture. GPCR-mediated signaling pathways have been linked to numerous human diseases, and GPCRs are the targets of approximately 35% of all drugs currently on the market. Structure network analysis, a graph theory-based approach, represents a cutting-edge tool to deeply understand GPCR function, which strongly relies on communication between the extracellular and intracellular poles of their structure. psnGPCRdb stores the structure networks (i.e., linked nodes, hubs, communities and communication pathways) computed on all updated GPCR structures in the Protein Data Bank, in their isolated states or in complex with extracellular and/or intracellular molecules. The structure communication signatures of a sub-family or family of GPCRs as well as of their small-molecule activators or inhibitors are stored as consensus networks. The database stores also all meaningful structure network-based comparisons (i.e., difference networks) of functionally different states (i.e., inactive or active) of a given receptor sub-type, or of consensus networks representative of a receptor sub-type, type, sub-family or family. Single or consensus GPCR networks hold also information on amino acid conservation. The database allows to graphically analyze 3D structure networks together with interactive data-tables. Ligand-centric networks can be analyzed as well. psnGPCRdb is unique and represents a powerful resource to unravel GPCR function with important implications in cell signaling and drug design. psnGPCRdb is freely available at: http://webpsn.hpc.unimo.it/psngpcr.php.


2022 - Structural communication between the GTPase Sec4p and its activator Sec2p: Determinants of GEF activity and early deformations to nucleotide release [Articolo su rivista]
Felline, A.; Raimondi, F.; Gentile, S.; Fanelli, F.
abstract

Ras GTPases are molecular switches that cycle between OFF and ON states depending on the bound nucleotide (i.e. GDP-bound and GTP-bound, respectively). The Rab GTPase, Sec4p, plays regulatory roles in multiple steps of intracellular vesicle trafficking. Nucleotide release is catalyzed by the Guanine Nucleotide Exchange Factor (GEF) Sec2p. Here, the integration of structural information with molecular dynamics (MD) simulations addressed a number of questions concerning the intrinsic and stimulated dynamics of Sec2p and Sec4p as well as the chain of structural deformations leading to GEF-assisted activation of the Rab GTPase. Sec2p holds an intrinsic ability to adopt the conformation found in the crystallographic complexes with Sec4p, thus suggesting that the latter selects and shifts the conformational equilibrium towards a pre-existing bound-like conformation of Sec2p. The anchoring of Sec4p to a suitable conformation of Sec2p favors the Sec2p-assisted pulling on itself of the α1/switch 1 (SWI) loop and of SWI, which loose any contact with GDP. Those deformations of Sec4p would occur earlier. Formation of the final Sec2p-Sec4p hydrophobic interface, accomplishes later. Disruption of the nucleotide cage would cause firstly loss of interactions with the guanine ring and secondly loss of interactions with the phosphates. The ease in sampling the energy landscape and adopting a bound-like conformation likely favors the catalyzing ability of GEFs for Ras GTPases.


2021 - Anti-drug antibody detection with label-free electrolyte-gated organic field-effect transistors [Articolo su rivista]
Sensi, Matteo; Berto, Marcello; Gentile, Sara; Pinti, Marcello; Conti, Andrea; Pellacani, Giovanni; Salvarani, Carlo; Cossarizza, Andrea; Bortolotti, Carlo Augusto; Biscarini, Fabio
abstract

The efficacy of immunotherapy can be undermined by the development of an immune response against a drug/antibody mediated by anti-drug antibodies (ADAs) in treated patients. We present the first label-free EGOFET immunosensor that integrates a biological drug, Nivolumab (Opdivo©), as a specific recognition moiety to quantitatively and selectively detect ADAs against the drug. The limit of detection is 100 fM. This demonstration is a prelude to the detection of ADAs in a clinical setting in the treatment of different pathologies, and it also enables rapid screening of biological drugs for immunogenicity.