Nuova ricerca

ELENA GENOVESE



Home |


Pubblicazioni

2023 - Chromosome 9p Duplication Promotes T-Cell Exhaustion and Enhances Stem Cell Clonogenic Potential in JAK2-Mutant Myeloproliferative Neoplasms [Abstract in Rivista]
Norfo, Ruggiero; Carretta, Chiara; Parenti, Sandra; Badii, Filippo; Bertesi, Matteo; Rontauroli, Sebastiano; Tavernari, Lara; Genovese, Elena; Sperduti, Samantha; Enzo, Elena; Mirabile, Margherita; Pedrazzi, Francesca; Pessina, Chiara; Colugnat, Ilaria; Mora, Barbara; Maccaferri, Monica; Tenedini, Elena; Martinelli, Silvia; Bianchi, Elisa; Casarini, Livio; Potenza, Leonardo; Luppi, Mario; Tagliafico, Enrico; Guglielmelli, Paola; Simoni, Manuela; Passamonti, Francesco; Vannucchi, Alessandro Maria; Manfredini, Rossella
abstract


2023 - Inhibition of ERK1/2 signaling prevents bone marrow fibrosis by reducing osteopontin plasma levels in a myelofibrosis mouse model [Articolo su rivista]
Bianchi, Elisa; Rontauroli, Sebastiano; Tavernari, Lara; Mirabile, Margherita; Pedrazzi, Francesca; Genovese, Elena; Sartini, Stefano; Dall'Ora, Massimiliano; Grisendi, Giulia; Fabbiani, Luca; Maccaferri, Monica; Carretta, Chiara; Parenti, Sandra; Fantini, Sebastian; Bartalucci, Niccolò; Calabresi, Laura; Balliu, Manjola; Guglielmelli, Paola; Potenza, Leonardo; Tagliafico, Enrico; Losi, Lorena; Dominici, Massimo; Luppi, Mario; Vannucchi, Alessandro Maria; Manfredini, Rossella
abstract

Clonal myeloproliferation and development of bone marrow (BM) fibrosis are the major pathogenetic events in myelofibrosis (MF). The identification of novel antifibrotic strategies is of utmost importance since the effectiveness of current therapies in reverting BM fibrosis is debated. We previously demonstrated that osteopontin (OPN) has a profibrotic role in MF by promoting mesenchymal stromal cells proliferation and collagen production. Moreover, increased plasma OPN correlated with higher BM fibrosis grade and inferior overall survival in MF patients. To understand whether OPN is a druggable target in MF, we assessed putative inhibitors of OPN expression in vitro and identified ERK1/2 as a major regulator of OPN production. Increased OPN plasma levels were associated with BM fibrosis development in the Romiplostim-induced MF mouse model. Moreover, ERK1/2 inhibition led to a remarkable reduction of OPN production and BM fibrosis in Romiplostim-treated mice. Strikingly, the antifibrotic effect of ERK1/2 inhibition can be mainly ascribed to the reduced OPN production since it could be recapitulated through the administration of anti-OPN neutralizing antibody. Our results demonstrate that OPN is a novel druggable target in MF and pave the way to antifibrotic therapies based on the inhibition of ERK1/2-driven OPN production or the neutralization of OPN activity.


2021 - Mutated clones driving leukemic transformation are already detectable at the single-cell level in CD34-positive cells in the chronic phase of primary myelofibrosis [Articolo su rivista]
Parenti, Sandra; Rontauroli, Sebastiano; Carretta, Chiara; Mallia, Selene; Genovese, Elena; Chiereghin, Chiara; Peano, Clelia; Tavernari, Lara; Bianchi, Elisa; Fantini, Sebastian; Sartini, Stefano; Romano, Oriana; Bicciato, Silvio; Tagliafico, Enrico; Della Porta, Matteo; Manfredini, Rossella
abstract

Disease progression of myeloproliferative neoplasms is the result of increased genomic complexity. Since the ability to predict disease evolution is crucial for clinical decisions, we studied single-cell genomics and transcriptomics of CD34-positive cells from a primary myelofibrosis (PMF) patient who progressed to acute myeloid leukemia (AML) while receiving Ruxolitinib. Single-cell genomics allowed the reconstruction of clonal hierarchy and demonstrated that TET2 was the first mutated gene while FLT3 was the last one. Disease evolution was accompanied by increased clonal heterogeneity and mutational rate, but clones carrying TP53 and FLT3 mutations were already present in the chronic phase. Single-cell transcriptomics unraveled repression of interferon signaling suggesting an immunosuppressive effect exerted by Ruxolitinib. Moreover, AML transformation was associated with a differentiative block and immune escape. These results suggest that single-cell analysis can unmask tumor heterogeneity and provide meaningful insights about PMF progression that might guide personalized therapy.


2019 - Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants [Articolo su rivista]
Salati, Simona; Genovese, Elena; Carretta, Chiara; Zini, Roberta; Bartalucci, Niccolò; Prudente, Zelia; Pennucci, Valentina; Ruberti, Samantha; Rossi, Chiara; Rontauroli, Sebastiano; Enzo, Elena; Calabresi, Laura; Balliu, Manjola; Mannarelli, Carmela; Bianchi, Elisa; Guglielmelli, Paola; Tagliafico, Enrico; Vannucchi, Alessandro M; Manfredini, Rossella
abstract

Somatic mutations of calreticulin (CALR) have been described in approximately 60-80% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs). However, the precise mechanism of action of CALR mutants haven't been fully unraveled. In this study, we showed that CALR mutants impair the ability to respond to the ER stress and reduce the activation of the pro-apoptotic pathway of the unfolded protein response (UPR). Moreover, our data demonstrated that CALR mutations induce increased sensitivity to oxidative stress, leading to increase oxidative DNA damage. We finally demonstrated that the downmodulation of OXR1 in CALR-mutated cells could be one of the molecular mechanisms responsible for the increased sensitivity to oxidative stress mediated by mutant CALR. Altogether, our data identify novel mechanisms collaborating with MPL activation in CALR-mediated cellular transformation. CALR mutants negatively impact on the capability of cells to respond to oxidative stress leading to genomic instability and on the ability to react to ER stress, causing resistance to UPR-induced apoptosis.


2018 - Calreticulin affects hematopoietic stem/progenitor cell fate by impacting erythroid and megakaryocytic differentiation [Articolo su rivista]
Salati, Simona; Prudente, Zelia; Genovese, Elena; Pennucci, Valentina; Rontauroli, Sebastiano; Bartalucci, Niccolo'; Mannarelli, Carmela; Ruberti, Samantha; Zini, Roberta; Rossi, Chiara; Bianchi, Elisa; Guglielmelli, Paola; Tagliafico, Enrico; Vannucchi, Alessandro M; Manfredini, Rossella
abstract

Calreticulin (CALR) is a chaperone protein that localizes primarily to the endoplasmic reticulum (ER) lumen where it is responsible for the control of proper folding of neo-synthesized glycoproteins and for the retention of calcium. Recently, mutations affecting exon 9 of the CALR gene have been described in approximately 40% of patients with myeloproliferative neoplasms (MPNs). Although the role of mutated CALR in the development of MPNs has begun to be clarified, there are still no data available on the function of wild-type (WT) CALR during physiological hematopoiesis. In order to shed light on the role of WT CALR during normal hematopoiesis, we performed gene silencing and overexpression experiments in Hematopoietic Stem Progenitor Cells (HSPCs). Our results showed that CALR overexpression is able to affect physiological hematopoiesis by enhancing both erythroid and megakaryocytic (MK) differentiation. In agreement with overexpression data, CALR silencing caused a significant decrease in both erythroid and MK differentiation of human HSPCs. Gene expression profiling (GEP) analysis showed that CALR is able to affect the expression of several genes involved in HSPCs differentiation towards both the erythroid and MK lineages. Moreover, GEP data also highlighted the modulation of several genes involved in ER stress response, unfolded protein response (UPR), DNA repair and of several genes already described to play a role in MPN development, such as pro-inflammatory cytokines and hematological neoplasms-related markers. Altogether, our data unraveled a new and unexpected role for CALR in the regulation of normal hematopoietic differentiation. Moreover, by showing the impact of CALR on the expression of genes involved in several biological processes already described in cellular transformation, our data strongly suggest a more complex role for CALR in MPN development that goes beyond the activation of the THPO receptor and involves ER stress response, UPR and DNA repair.


2018 - Role of TGF-β1/miR-382-5p/SOD2 axis in the induction of oxidative stress in CD34+ cells from primary myelofibrosis [Articolo su rivista]
Rossi, Chiara; Zini, Roberta; Rontauroli, Sebastiano; Ruberti, Samantha; Prudente, Zelia; Barbieri, Greta; Bianchi, Elisa; Salati, Simona; Genovese, Elena; Bartalucci, Niccolò; Guglielmelli, Paola; Tagliafico, Enrico; Rosti, Vittorio; Barosi, Giovanni; Vannucchi, Alessandro M.; Manfredini, Rossella
abstract

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by an excessive production of pro-inflammatory cytokines resulting in chronic inflammation and genomic instability. Besides the driver mutations in JAK2, MPL, and CALR genes, the deregulation of miRNA expression may also contribute to the pathogenesis of PMF. To this end, we recently reported the upregulation of miR-382-5p in PMF CD34+ cells. In order to unveil the mechanistic details of the role of miR-382-5p in pathogenesis of PMF, we performed gene expression profiling of CD34+ cells overexpressing miR-382-5p. Among the downregulated genes, we identified superoxide dismutase 2 (SOD2), which is a predicted target of miR-382-5p. Subsequently, we confirmed miR-382-5p/SOD2 interaction by luciferase assay and we showed that miR-382-5p overexpression in CD34+ cells causes the decrease in SOD2 activity leading to reactive oxygen species (ROS) accumulation and oxidative DNA damage. In addition, our data indicate that inhibition of miR-382-5p in PMF CD34+ cells restores SOD2 function, induces ROS disposal, and reduces DNA oxidation. Since the pro-inflammatory cytokine transforming growth factor-β1 (TGF-β1) is a key player in PMF pathogenesis, we further investigated the effect of TGF-β1 on ROS and miR-382-5p levels. Our data showed that TGF-β1 treatment enhances miR-382-5p expression and reduces SOD2 activity leading to ROS accumulation. Finally, inhibition of TGF-β1 signaling in PMF CD34+ cells by galunisertib significantly reduced miR-382-5p expression and ROS accumulation and restored SOD2 activity. As a whole, this study reports that TGF-β1/miR-382-5p/SOD2 axis deregulation in PMF cells is linked to ROS overproduction that may contribute to enhanced oxidative stress and inflammation. Our results suggest that galunisertib may represent an effective drug reducing abnormal oxidative stress induced by TGF-β1 in PMF patients. Database linking: GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103464.


2017 - CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles [Articolo su rivista]
Zini, Roberta; Guglielmelli, Paola; Pietra, Daniela; Rumi, Elisa; Rossi, Chiara; Rontauroli, Sebastiano; Genovese, Elena; Fanelli, Tiziana; Calabresi, Laura; Bianchi, Elisa; Salati, Simona; Cazzola, Mario; Tagliafico, Enrico; Vannucchi, Alessandro M.; Manfredini, Rossella
abstract

Polycythemia vera (PV) and essential thrombocythemia (ET) are Philadelphia-negative myeloproliferative neoplasms (MPNs) characterized by erythrocytosis and thrombocytosis, respectively. Approximately 95% of PV and 50-70% of ET patients harbor the V617F mutation in the exon 14 of JAK2 gene, while about 20-30% of ET patients carry CALRins5 or CALRdel52 mutations. These ET CALR-mutated subjects show higher platelet count and lower thrombotic risk compared to JAK2-mutated patients. Here, we showed that CALR-mutated and JAK2V617F-positive CD34+ cells display different gene and miRNA expression profiles. Indeed, we highlighted several pathways differentially activated between JAK2V617F- and CALR-mutated progenitors, i.e., mTOR, MAPK/PI3K, and MYC pathways. Furthermore, we unveiled that the expression of several genes involved in DNA repair, chromatin remodeling, splicing, and chromatid cohesion are decreased in CALR-mutated cells. According to the low risk of thrombosis in CALR-mutated patients, we also found the downregulation of several genes involved in thrombin signaling and platelet activation. As a whole, these data support the model that CALR-mutated ET could be considered as a distinct disease entity from JAK2V617F-positive MPNs and may provide the molecular basis supporting the different clinical features of these patients.


2017 - Deregulated expression of miR-29a-3p, miR-494-3p and miR-660-5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells [Articolo su rivista]
Salati, Simona; Salvestrini, Valentina; Carretta, Chiara; Genovese, Elena; Rontauroli, Sebastiano; Zini, Roberta; Rossi, Chiara; Ruberti, Samantha; Bianchi, Elisa; Barbieri, Greta; Curti, Antonio; Castagnetti, Fausto; Gugliotta, Gabriele; Rosti, Gianantonio; Bergamaschi, Micaela; Tafuri, Agostino; Tagliafico, Enrico; Lemoli, Roberto; Manfredini, Rossella
abstract

The development of Imatinib mesylate (IM), which targets the oncogenic BCRABL fusion protein, has greatly improved the outcome of Chronic Myeloid Leukemia (CML) patients. However, BCR-ABL-positive progenitors can be detected in CML patients in complete cytogenetic response. Several evidence suggests that CML stem cells are intrinsically resistant to Tyrosine Kinase Inhibitors (TKI), and therefore they represent the most likely candidate responsible for disease relapse. In this work, we investigated the microRNA (miRNA) expression profile of different subpopulations of CML Leukemic Stem Cells (LSCs): Lin-CD34+CD38-and Lin-CD34-CD38-cells. These cell fractions have been previously shown to be endowed with TKI intrinsic resistance. Our analysis identified 33 common deregulated miRNAs in CML LSCs. Among those, 8 miRNAs were deregulated in CML independently from BCR-ABL kinase activity and therefore are likely to be involved in the BCR-ABL-independent resistance to TKI that characterizes CML LSCs. In particular, the up-regulation of miR-29a-3p and miR-660-5p observed in CML LSCs, led to the down-regulation of their respective targets TET2 and EPAS1 and conferred TKI-resistance to CML LSCs in vitro. On the other hand, miR-494-3p down-regulation in CML LSCs, leading to c-MYC up-regulation, was able to decrease TKI-induced apoptosis. These results demonstrate that aberrant miRNA expression in CML LSCs could contribute to the intrinsic TKIresistance observed in these cell populations, and support the development of novel therapies aimed at targeting aberrantly regulated miRNAs or their targets in order to effectively eradicate CML LSCs.