Nuova ricerca

CLARISSA CAROLI

Dottorando
Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze


Home |


Pubblicazioni

2024 - A label free chemoproteomic-based platform to disclose cannabidiol molecular mechanism of action on chronic myelogenous leukemia cancer cells [Articolo su rivista]
Ceccacci, S.; Corsi, L.; Spinelli, L.; Caroli, C.; Marani, M.; Ancesch, i L.; Mozzicafreddo, M.; Pellati, F.; Monti, M. C.
abstract

The discovery of the interactome of cannabidiol (CBD), a non-psychoactive cannabinoid from Cannabis sativa L., has been here performed on chronic myelogenous leukemia cancer cells, using an optimized chemo-proteomic stage, which links Drug Affinity Responsive Target Stability with Limited Proteolysis Multiple Reaction Monitoring approaches. The obtained results showed the ability of CBD to target simultaneously some potential protein partners, corroborating its wellknown poly-pharmacology activity. In human chronic myelogenous leukemia K562 cancer cells, the most fascinating protein partner was identified as the 116 kDa U5 small nuclear ribonucleoprotein element called EFTUD2, which fits with the spliceosome complex. The binding mode of this oncogenic protein with CBD was clarified using mass spectrometry-based and in silico analysis.


2024 - Extraction, purification and in vitro assessment of the antioxidant and anti-inflammatory activity of policosanols from non-psychoactive Cannabis sativa L [Articolo su rivista]
Caroli, C.; Baron, G.; Cappellucci, G.; Brighenti, V.; Della Vedova, L.; Fraulini, F.; Oliaro-Bosso, S.; Alessandrini, A.; Zambon, A.; Lusvardi, G.; Aldini, G.; Biagi, M.; Corsi, L.; Pellati, F.
abstract

: Policosanols (PCs) are bioactive compounds extracted from different natural waxes. In this work, the purification, characterization and assessment of the antioxidant and anti-inflammatory activity was carried out on PCs from an innovative source, i.e. a waxy material from supercritical-fluid extraction (SFE) of non-psychoactive Cannabis sativa L. (hemp) inflorescences. Starting from this material, PCs were obtained by microwave-assisted trans-esterification and hydrolysis, followed by preparative liquid chromatography under normal phase conditions. The purified product was characterized using high-performance liquid chromatography (HPLC) with an evaporative light scattering detector (ELSD). In vitro cell-free and cell-based antioxidant and anti-inflammatory assays were then performed to assess their bioactivity. HPLC-ELSED analysis of the purified mixture from hemp wax revealed C26OH and C28OH as the main compounds. In vitro assays indicated an inhibition of intracellular reactive oxygen species (ROS) production, a reduction of nuclear factor kappa B (NF-κB) activation and of the activity of the neutrophil elastase. Immunoblotting assays allowed us to hypothesize the mechanism of action of the compounds of interest, given the higher levels of MAPK-activated protein kinase 2 (MK2) and heme oxygenase-1 (HO-1) protein expression in the PC pretreated HaCaT cells. In conclusion, even if more research is needed to unveil other molecular mechanisms involved in hemp PC activity, the results of this work suggest that these compounds may have potential for use in oxinflammation processes.


2024 - Extraction, purification and in vitro assessment of the antioxidant and anti-inflammatory activity of policosanols from non-psychoactive Cannabis sativa L [Articolo su rivista]
Caroli, Clarissa; Baron, Giovanna; Cappellucci, Giorgio; Brighenti, Virginia; Della Vedova, Larissa; Fraulini, Francesca; Oliaro-Bosso, Simonetta; Alessandrini, Andrea; Zambon, Alfonso; Lusvardi, Gigliola; Aldini, Giancarlo; Biagi, Marco; Corsi, Lorenzo; Pellati, Federica
abstract

Policosanols (PCs) are bioactive compounds extracted from different natural waxes. In this work, the purification, characterization and assessment of the antioxidant and anti-inflammatory activity was carried out on PCs from an innovative source, i.e. a waxy material from supercriticalfluid extraction (SFE) of non -psychoactive Cannabis sativa L. (hemp) inflorescences. Starting from this material, PCs were obtained by microwave -assisted trans -esterification and hydrolysis, followed by preparative liquid chromatography under normal phase conditions. The purified product was characterized using high-performance liquid chromatography (HPLC) with an evaporative light scattering detector (ELSD). In vitro cell -free and cell -based antioxidant and antiinflammatory assays were then performed to assess their bioactivity.


2023 - An innovative method for the extraction and HPLC analysis of bioactive policosanols from non-psychoactive Cannabis sativa L. [Articolo su rivista]
Brighenti, V; Venturelli, A; Caroli, C; Ancesch, i L.; Gjikolaj, M.; Durante, C.; Pellati, F.
abstract

Policosanols (PCs) refer to a mixture of long-chain aliphatic alcohols. Sugar cane is the main industrial source of PCs, but others, including beeswax and Cannabis sativa L., are also known. In the raw material PCs are bonded to fatty acids to form long-chain esters, known as waxes. PCs are mainly used as a cholesterol-lowering product, even though their efficacy is controversial. More recently, the pharmacological interest in PCs has increased, as they have been investigated as antioxidant, anti-inflammatory and anti-proliferative agents. Given their promising biological implications, the development of efficient extraction and analytical methodologies for the determination of PCs is extremely important to identify new potential sources of these compounds and to ensure the reproducibility of biological data. Conventional techniques used for the extraction of PCs involve time-consuming approaches leading to low yields, while analytical methods for their quantification are based on gas-chromatographic (GC) techniques, which require an additional derivatization step during the sample preparation to increase their volatility. In the light of all the above, this work was aimed at the development of an innovative method for the extraction of PCs from non-psychoactive C. sativa (hemp) inflorescences, taking advantage of the microwave-assisted technology. In addition, a new analytical method based on high-performance liquid chromatography (HPLC) coupled with an evaporative light scattering detector (ELSD) was developed for the first time for both the qualitative and quantitative analysis of these compounds in the extracts. The method was validated according to ICH guidelines, and it was applied to the analysis of PCs in hemp inflorescences belonging to different varieties. The results were analyzed using Principal Component Analysis (PCA) and hierarchical clustering analysis to rapidly identify samples with the highest content of PCs, which might find an application as alternative sources of these bioactive compounds in both the pharmaceutical and nutraceutical fields.


2023 - Helichrysum stoechas (L.) Moench reduces body weight gain and modulates mood disorders via inhibition of silent information regulator 1 (SIRT1) by arzanol [Articolo su rivista]
Borgonetti, V.; Caroli, C.; Governa, P.; Virginia, B.; Pollastro, F.; Franchini, S.; Manetti, F.; Les, F.; López, V.; Pellati, F.; Galeotti, N.
abstract

The prevalence of obesity is steadily rising, making safe and more efficient anti-obesity treatments an urgent medical need. Growing evidence correlates obesity and comorbidities, including anxiety and depression, with the development of a low-grade inflammation in peripheral and central tissues. We hypothesized that attenuating neuroinflammation might reduce weight gain and improve mood. We investigated the efficacy of a methanolic extract from Helichrysum stoechas (L.) Moench (HSE), well-known for its anti-inflammatory properties, and its main constituent arzanol (AZL). HPLC-ESI-MS2 and HPLC-UV were used to characterize the extract. HSE effects on mood and feeding behavior was assessed in mice. The mechanism of action of HSE and AZL was investigated in hippocampus samples and SH-SY5Y cells by western blotting and immunofluorescence. Oral administration of HSE for 3 weeks limited weight gain with no significant decrease in food intake. HSE produced an anxiolytic-like and antidepressant-like phenotype comparable to diazepam and amitriptyline, respectively, in the absence of locomotor and cognitive impairments and induced neuroprotective effects in glutamate-exposed SH-SY5Y cells. A dose-dependent reduction of SIRT1 expression was detected in SH-SY5Y cells and in hippocampal samples from HSE-treated mice. The inhibition of the SIRT1-FoxO1 pathway was induced in the hypothalamus. Molecular docking studies proposed a mechanism of SIRT1 inhibition by AZL, confirmed by the evaluation of inhibitory effects on SIRT1 enzymatic activity. HSE limited weight gain and comorbidities through an AZL-mediated SIRT1 inhibition. These activities indicate HSE an innovative therapeutic perspective for obesity and associated mood disorders.


2023 - Identification of phenolic compounds from inflorescences of non-psychoactive Cannabis sativa L. by UHPLC-HRMS and in vitro assessment of the antiproliferative activity against colorectal cancer [Articolo su rivista]
Caroli, C.; Brighenti, V.; Cattivelli, A.; Salamone, S.; Pollastro, F.; Tagliazucchi, D.; Pellati, F.
abstract

Phenolic compounds from Cannabis sativa L. (Cannabaceae family), in particular cannflavins, are known to possess several biological properties. However, their antiproliferative activity, being of great interest from a medicinal chemistry point of view, has not been deeply investigated so far in the literature. In the light of this, the aim of this study was to obtain an enriched fraction of polyphenols (namely PEF) from inflorescences of a non-psychoactive C. sativa (hemp) variety and to evaluate its antiproliferative activity against cancer cells, capitalizing on a new and selective extraction method for hemp polyphenols, followed by preparative flash column chromatography. Untargeted metabolomics, using a new method based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), was applied here for the first time to fully characterize PEF. Then, the main phenolic compounds were quantified by HPLC-UV. The antiproliferative activity of PEF and of the isolated compounds was assessed in vitro for the first time against Caco-2 and SW480 human colon adenocarcinoma cell lines providing promising IC50 values, in comparison with the reference drug used in therapy for this cancer type. Based on these results, PEF can be considered as a new highly potential therapeutic product to be further investigated against colorectal cancer, thanks to the possible synergistic interaction of its compounds.


2022 - Application of experimental design in HPLC method optimisation for the simultaneous determination of multiple bioactive cannabinoids [Articolo su rivista]
Durante, C.; Anceschi, L.; Brighenti, V.; Caroli, C.; Afezolli, C.; Marchetti, A.; Cocchi, M.; Salamone, S.; Pollastro, F.; Pellati, F.
abstract

The scientific interest in Cannabis sativa L. analysis has been rapidly increasing in recent years, especially for what concerns cannabinoids, plant secondary metabolites which are well known for having many biological properties. High-performance liquid chromatography (HPLC) is frequently used for both the qualitative and quantitative analysis of cannabinoids in plant extracts from C. sativa and its derived products. Many studies have been focused on the main cannabinoids, such as Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA) and their decarboxylated derivatives, such as Delta(9)-tetrahydrocannabinol (Delta(THC)-T-9), cannabidiol (CBD) and cannabigerol (CBG). In addition to the abovementioned compounds, the plant produces other metabolites of the same chemical class, and some of them have shown interesting biological activities.In the light of this, it is important to have efficient analytical methods for the simultaneous separation of cannabinoids, which is quite complex since they present similar chemical-physical characteristics. The present work is focused on the use of the Design of Experiments technique (DoE) to develop and optimise an HPLC method for the simultaneous separation of 14 cannabinoids. Experimental design optimisation was applied by using a Central Composite Face-Centered design to achieve the best resolution with minimum experimental trials. Five significant variables affecting the chromatographic separation, including ammonium formate concentration, gradient elution, run time and flow rate, were studied. A multivariate strategy, based on Principal Component Analysis (PCA) and Partial Least Squared (PLS) regression, was used to define the best operative conditions. The developed method allowed for the separation of 12 out of 14 cannabinoids. Due to co-elution phenomena, HPLC coupled with a triple quadrupole mass analyser (HPLC-ESI-MS/MS) was applied, monitoring the specific transitions of each compound in the multiple reaction monitoring (MRM) mode. Finally, the optimised method was applied to C. sativa extracts having a different cannabinoid profile to demonstrate its efficiency to real samples.The methodology applied in this study can be useful for the separation of other cannabinoid mixtures, by means of appropriate optimisation of the experimental conditions.