Nuova ricerca

ALESSANDRO CHIARI

Dottorando
Dipartimento di Ingegneria "Enzo Ferrari"


Home |


Pubblicazioni

2023 - A Spline-Based Analytical Model for the Design of an Automotive Anti-Roll Bar [Relazione in Atti di Convegno]
Chiari, Alessandro; Mantovani, Sara; Skrickij, Viktor; Boulay, Emilie
abstract

The new corner-based architecture of electrified road vehicles requires a redesign of vehicle suspension components. The design protocol must satisfy the target parameters derived from dynamics requirements. The roll stiffness of the anti-roll bar is a crucial parameter for the handling performance of a vehicle. During the development of a new suspension, the design of the anti-roll bar needs to be modified. To this aim, two-dimensional beam theory models can quickly provide a preliminary design of this component. However, the simplified models might be inaccurate due to the three-dimensional and complex shapes of the bars. The present study aims to overcome this limitation. An analytical beam model based on the spline description of the bar has been developed, which is accurate even for complex geometries of the bars. Assuming a hollow and closed circular cross-section, the model returns the average diameter and the radial thickness needed to achieve the stiffness performance. Three different approaches for the thickness have been analyzed by assuming: (I) a prescribed thickness, (II) a prescribed global mass, and (III) a prescribed maximum value of stress. The first two methods present a uniform thickness along the bar, whereas, in the third one, the thickness varies to obtain the lightest solution. This latter method can be modified to ensure a feasible minimum thickness. Finally, a full-factorial design of the experiments algorithm has been developed to reduce the stress by varying the position of the spline control points. The proposed methods can provide a good preliminary design of the bar and can drive a material replacement process from a lightweight viewpoint


2023 - Load bearing capability of three-units 4Y-TZP monolithic fixed dental prostheses: An innovative model for reliable testing [Articolo su rivista]
Chiari, Alessandro; Mantovani, Sara; Berzaghi, Andrea; Bellucci, Devis; Bortolini, Sergio; Cannillo, Valeria
abstract

In this work, three-units monolithic fixed dental prostheses (FDPs) have been analysed and a novel model for reliable testing has been proposed. Such model is based on a new design of the polymeric base of the FDP, realised via additive manufacturing (AM) - a solution that conveys at the same time quick manufacturability, low cost, custom-ability, and design freedom. By means of this new model, the load-bearing capability of three-units monolithic FDPs has been thoroughly tested; in particular, three different analyses were performed: (i) analytical with a beam-like model, (ii) numerical, using non-linear three-dimensional Finite Elements (FE) models and (iii) experimental, by static bending test. The FDPs considered in this work were manufactured using a fourth-generation zirconia, namely 4Y-TZP. The findings demonstrated the undoubted advantages of the new base configuration, which minimized the effect of the base (which as a matter of fact is absent in in-vivo conditions) on the stress state of the connectors in the FDPs, and increased the repeatability and reliability of the experimental bending tests, able to determine the load bearing capability of the 4Y-TZP FDPs.


2022 - Shafts with U-shaped circumferential grooves: design charts for stress concentration factors, radial displacement and Poisson’s ratio influence [Articolo su rivista]
Mantovani, Sara; Chiari, Alessandro; Giacalone, Mauro; Strozzi, Antonio
abstract

Shafts with U-shaped circumferential grooves subjected to internal normal force and bending moment are investigated on the basis of finite element analysis. The classical problem of the Stress Concentration Factors (SCFs) identification is addressed. SCF charts are provided, adopting the maximum equivalent von Mises stress in the SCF definition. The discrepancy between the uniaxial SCFs extracted from the standard reference books and the multiaxial SCF obtained by finite element increases from 5% up to 20%. The intersections between the SCF curves are studied, which reveal a non-monotonic profile of the SCFs with respect to the outer and inner diameter ratio of the notched shaft. The radial displacement at the notch root is examined and design charts of ample validity and prompt access are compiled. It is found that the radial displacement sign and magnitude are largely dependent on the geometry of the notch. Furthermore, the strain and stress state of extremely shallow grooves are analysed and a critical discussion on their SCFs using the von Mises criterion is presented. The influence of the Poisson’s ratio is considered. A simplified method for the evaluation of a multiaxial SCF is proposed to account for the Poisson’s ratio effect. Thanks to the employment of few dedicated diagrams, the present method allows an accurate evaluation of the SCF for U-grooved shafts, when the Poisson’s ratio differs from the common 0.3 value.