Nuova ricerca

ALBERTO VERGNANO

Professore Associato
Dipartimento di Ingegneria "Enzo Ferrari"

Insegnamento: Metodi di progettazione

Ingegneria del veicolo (Offerta formativa 2024)

Obiettivi formativi

Conoscere e comprendere i fondamenti dell’approccio sistematico alla progettazione meccanica in ambito ingegneristico.
Elaborare in modo autonomo e originale, e applicare conoscenze multidisciplinari alla progettazione di sistemi e componenti nell’ambito dell’ingegneria del veicolo e alla produzione della Documentazione Tecnica di Prodotto, anche attraverso l’uso di tecniche e strumenti di e-Design (i.e. Computer Aided Design e Computer Aided Engineering).
Sviluppare la capacità di operare all’interno di un gruppo di lavoro, pianificando e gestendo le attività necessarie a raggiungere risultati progettuali tecnicamente validi.

Prerequisiti

Disegno Tecnico Industriale

Programma del corso

Teoria (6 CFU, 54 ore)
Progettazione Sistematica: Fondamenti dell’approccio sistematico alla progettazione; Pianificazione di prodotto e del processo di progettazione; Chiarimento dei compiti e lista dei requisiti; Progettazione concettuale; Progettazione di massima: regole di base e principi; integrazione di prodotto e processo. Progettazione di dettaglio.
Design for Manufacturing and Assembly: principi del DFA, architettura di Sistema, interface standard, famiglia di prodotto, progettazione di prodotti modulari, step dimensionali, analisi di un assieme, semplificazione e standardizzazione di un assieme; principi del DFM, Design for Machining, Design for Sheet metal Working, Design for Moulding.
Tolerancing: progettazione di dettaglio, approccio Geometric Dimensioning and Tolerancing, tolleranze dimensionali e accoppiamenti ISO, tolleranze geometriche, standard ISO and ASME, tolleranze generali, finitura superficiale e rugosità, analisi funzionale di una parte, modificatori del principio di indipendenza
Meccatronica: simulazione Hardware in the Loop, Design by Simulation, introduzione e approfondimento del microcontrollore Arduino, analisi di casi studio reali, progetto pratico di gruppo.

Laboratorio (3 CFU, 27 ore)
Tecniche e strumenti Computer Aided a supporto della progettazione: 3DExperience – Catia V6: introduzione, parametric design e design intent, modellazione di solidi e superfici. Computer-Aided Engineering: moduli CAE.

Metodi didattici

L’insegnamento prevede: lezioni frontali teoriche realizzate con l’ausilio di sistemi multimediali. Il materiale didattico viene reso disponibile prima di ogni lezione attraverso la piattaforma “Dolly” (http://dolly.ingmo.unimore.it); esercitazioni pratiche e attività di laboratorio inerenti la realizzazione di schizzi tecnici, la modellazione parametrica 3D assistita da calcolatore e la realizzazione di disegni tecnici quotati e tollerati; seminari tecnici tenuti da specialisti e visite di istruzione presso aziende del territorio.
Durante il corso gli studenti vengono suddivisi in gruppi di lavoro di 4/5 persone e viene assegnato loro la gestione autonoma e lo sviluppo di un progetto in ambito veicolistico, da presentare e discutere in sede d’esame. Prodotti attesi sono: una esposizione orale di 15 minuti, una relazione tecnica di presentazione dei risultati progettuali, modelli CAD e relativi disegni costruttivi (di definizione) e di fabbricazione (di produzione).

Testi di riferimento

Il materiale didattico sarà fornito dai docenti attraverso i canali Moodle e comprende le slide utilizzate a lezione ed esercizi assegnati per la preparazione dell'esame.

Inoltre, si consigliano i seguenti testi:
Per lo studio/For study
G. Pahl, W. Beitz, J. Feldhusen, K.H. Grote, "Engineering Design: a systematic approach", Springer;

Per l’approfondimento personale dei contenuti/For the personal deepening of contents:
Ingegneria del veicolo/Vehicle engineering: G. Genta, L. Morello, "La carrozzeria vol. 1: progetto del sistema", ATA; G. Genta, L. Morello, "La carrozzeria vol. 2: progetto dei componenti", ATA; G. Genta, L. Morello, "L'autotelaio vol. 1: progetto del sistema", ATA; G. Genta, L. Morello, "L'autotelaio vol. 2: progetto dei componenti", ATA.
Metodi di progettazione/Engineering Design methods: K. Otto, K. Wood, Product Design", Prentice Hall; K.T. Ulrich, S.D. Eppinger, Product Design and Development, Mc-Graw-Hill.
Dimensionamento geometrico e tolleramento/GD&T: G. Henzold, Geometrical Dimensioning and Tolerancing for Design, Manufacturing And Inspection: A Handbook for Geometrical Product Specification Using Iso and Asme Standards, Butterworth-Heinemann; M. Orlando, Tolleranze geometriche GD&T – Teoria e applicazioni, CLUT; B.R. Fischer, Mechanical tolerance stackup and analysis. CRC Press.
Progettazione e produzione/Design and manufacturing: S. Kalpakajian, S. Schmid, Manufacturing Engineering & Technology, Prentice Hall; G. Boothroyd, P. Dewhurst, W. A. Knight, Product design for manufacturing and assembly, CRC Press; M. F. Ashby, Materials Selection in Mechanical Design, Butterworth-Heinemann.

Verifica dell'apprendimento

1. La verifica dell’apprendimento prevede tre prove: una prova scritta con domande aperte e esercizi (o in alternativa un progetto applicativo di gruppo da sviluppare secondo le indicazioni fornite durante il corso), una prova di modellazione 3D in laboratorio e, al superamento di queste, una prova orale facoltativa.
- La prova scritta è costituita da 2 domande aperte sul programma del corso e un esercizio sulle catene di tolleranze. La prova non deve essere svolta qualora lo studente scegliesse il progetto applicativo.
- La prova di modellazione 3D prevede l’interpretazione di un disegno tecnico di un componente o di un insieme fornito in proiezione ortogonale, la successiva modellazione 3D di un componente, e la realizzazione del relativo disegno tecnico in proiezione ortogonale a più viste, quotato e tollerato.
- La prova orale (facoltativa) prevede un colloquio di verifica della conoscenza del programma del corso e la verifica della capacità di applicare tali conoscenze alla realizzazione di schizzi tecnici.
2. Durata delle prove:
La prova scritta prevede 3 domande aperte o esercizi: Ogni domanda aperta o esercizio ha durata indicativa di 20 minuti.
La prova di laboratorio CAD 3D ha durata indicativa di 1:30 ore.
3. Il voto finale risulta dalla media aritmetica dei tre voti ottenuti nelle singole prove. L’esame si intende superato se il punteggio di ogni prova risulta almeno sufficiente.
4. Durante le prove, non è possibile consultare il materiale didattico. Se l’esame prevede tabelle da consultare, queste saranno consegnate insieme al testo della prova.
Nota: E' prevista una prova intermedia per la sola parte di teoria.

Risultati attesi

Conoscenza e capacità di comprensione: tramite le lezioni frontali e i seminari tecnici tenuti da specialisti, gli studenti apprendono i metodi e le tecniche principali della progettazione ingegneristica, e sviluppano la capacità di elaborare e applicare idee originali, anche in un contesto di Ricerca & Sviluppo.
Capacità di applicare conoscenza e comprensione: tramite lo sviluppo autonomo del progetto, le esercitazioni pratiche e le attività di laboratorio inerenti la progettazione assistita da calcolatore, gli studenti apprendeono come applicare le conoscenze acquisite, anche in ambiti multidisciplinari nuovi o non familiari.
Autonomia di giudizio: tramite lo sviluppo di un progetto ingegneristico, svolto in gruppo, e il confronto con il docente, gli studenti sviluppano la capacità di integrare le conoscenze e gestire la complessità, e di formulare giudizi, anche sulla base di informazioni limitate o incomplete, includendo la riflessione sulle responsabilità sociali ed etiche collegate all’applicazione delle loro conoscenze e giudizi.
Abilità comunicative: tramite il lavoro in gruppo e il confronto con il docente, lo studente sviluppa la capacità di comunicare criticamente, specialmente attraverso il linguaggio tecnico ingegneristico, informazioni tecniche, idee, problemi, soluzioni a interlocutori specialisti e non specialisti.
Capacità di apprendere: le attività descritte consentono allo studente di sviluppare le capacità di apprendimento necessarie ad approfondire argomenti tecnici in autonomia, al fine di affrontare efficacemente l’inserimento nel mondo del lavoro o ad intraprendere percorsi di formazione successivi.