Nuova ricerca

LUCA BRUGNOLI

COLLABORATORE DI RICERCA
Dipartimento di Scienze Chimiche e Geologiche - Sede Dipartimento di Scienze Chimiche e Geologiche


Home |


Pubblicazioni

2022 - H2O2 adsorption and dissociation on various CeO2(111) surface models: a first-principles study [Articolo su rivista]
Brugnoli, L.; Urata, S.; Pedone, A.
abstract

Periodic density functional theory (DFT) calculations using the hybrid PBE0 functional and atom-centered Gaussian functions as basis sets were carried out to investigate the absorption and the first steps involved in the decomposition of hydrogen peroxide (H2O2) on three different models of the ceria (111) surface. One of the models is a clean surface, and the others are defective and partially hydroxylated ceria surfaces. On the clean surface, we found that the minimum energy path of hydrogen peroxide decomposition involves a three-step process, i.e., adsorption, deprotonation, and formation of the peroxide anion, stabilized through its interaction with the surface at a Ce (IV) site, with activation barriers of less than about 0.5 eV. The subsequent formation of superoxide anions and molecular oxygen species is attributed to electron transfer from the reactants to the Ce (IV) ions underneath. On the defective surface, H2O2dissociation is an energetically downhill reaction thermodynamically driven by the healing of the O vacancies, after the reduction and decomposition of H2O2into oxygen and water. On the hydroxylated surface, H2O2is first adsorbed by forming a favorable H-bond and then undergoes heterolytic dissociation, forming two hydroxyl groups at two vicinal Ce sites.


2021 - Development and Application of a ReaxFF Reactive Force Field for Cerium Oxide/Water Interfaces [Articolo su rivista]
Brugnoli, L.; Menziani, M. C.; Urata, S.; Pedone, A.
abstract

Ceria (CeO2) is a well-known catalytic oxide with many environmental, energy production, and industrial applications, most of them involving water as a reactant, byproduct, solvent, or simple spectator. In this work, we parameterized a Ce/O/H ReaxFF for the study of ceria and ceria/water interfaces. The parameters were fitted to anab initiotraining set obtained at the DFT/PBE0 level, including the structures, cohesive energies, and elastic properties of the crystalline phases Ce, CeO2, and Ce2O3; the O-defective structures and energies of vacancy formation on CeO2bulk and CeO2(111) surface, as well as the absorption and reaction energies of H2and H2O molecules on CeO2(111). The new potential reproduced reasonably well all the fitted properties as well as the relative stabilities of the different ceria surfaces, the oxygen vacancies formation, and the energies and structures of associative and dissociative water molecules on them. Molecular dynamics simulations of the liquid water on the CeO2(111) and CeO2(100) surfaces were carried out to study the coverage and the mechanism of water dissociation. After equilibration, on average, 35% of surface sites of CeO2(111) are hydroxylated whereas 15% of them are saturated with molecular water associatively adsorbed. As for the CeO2(100) surface, we observed that water preferentially dissociates covering 90% of the available surface sites in excellent agreement with recent experimental findings.


2020 - O2Activation over Ag-Decorated CeO2(111) and TiO2(110) Surfaces: A Theoretical Comparative Investigation [Articolo su rivista]
Brugnoli, L.; Pedone, A.; Menziani, M. C.; Adamo, C.; Labat, F.
abstract

Periodic spin-polarized hybrid density functional theory calculations have been performed to investigate the reactivity of pristine, O-defective, and Ag-decorated CeO2(111) and TiO2(110) surfaces with a small Ag10 cluster toward O2. The adsorption of O2 and its subsequent dissociation have been studied in order to provide a better understanding of the role of the oxide, the metallic nanoparticle, and their interaction in the reactivity of composite metal/metal oxide materials toward O2, as potential catalysts to this reaction. Structural, energetic, electronic, and vibrational properties of all species involved in the different reaction paths considered have been fully characterized. On the stoichiometric surfaces, Ag10 is oxidized and reduces surface Ce4+/Ti4+ ions, while on the O-defective surfaces, the adhesion of silver is promoted only on CeO2 but unfavored on TiO2. On the other hand, on the silver-free supports, O2 strongly adsorbs at vacancies and preferentially reduces to peroxide. When no O vacancies are considered on the Ag10-decorated supports, the net positive charge on Ag10 actually prevents the adsorption and reduction of O2. Instead, when O vacancies are included, two reaction pathways are observed; oxygen molecules can weakly absorb on the silver cluster as a superoxide moiety or strongly adsorb at the vacancy as peroxide. The dissociation of the O-O bond of the peroxide is favored both from the thermodynamic and kinetic points of view in silver-decorated surfaces, in contrast with the silver-free cases. In addition, Ag10/CeO2 shows higher activity toward the O2 adsorption and dissociation than Ag10/TiO2, which can be related both to the higher ionicity and superior electron storage/release ability of ceria with respect to titania, thus leading to the weakening of the O-O bond and providing lower activation barriers for oxygen reduction. These results deepen the current understanding of the reactivity of metal/metal oxide composites toward O2, especially elucidating how the surface stoichiometry affects the charge state of the metal clusters, and hence the reactivity of these interfaces toward O2, with potential important consequences when such composites are considered for catalytic applications.


2019 - H2 Dissociation and Water Evolution on Silver-Decorated CeO2(111): A Hybrid Density Functional Theory Investigation [Articolo su rivista]
Brugnoli, L.; Pedone, A.; Menziani, M. C.; Adamo, C.; Labat, F.
abstract

We present a theoretical investigation of the reactivity of both a pristine CeO2 surface and a small Ag cluster adsorbed on a CeO2 surface toward H2, using a periodic spin-polarized hybrid density functional theory approach. The dissociation of H2 and subsequent formation of H2O have been considered to highlight the role of the metal structure and its underlying metal oxide support as a potential candidate as a catalyst to the above-mentioned reactions. The structural, energetic, electronic, and vibrational properties of all species involved in different reaction paths considered have been fully characterized. The cluster-oxide surface interface has been found to involve the reduction of up to 3Ce4+ to Ce3+, by direct electron transfer from the cluster to the oxide. When comparing the reducibility of the Ag-CeO2 and clean CeO2 systems, O vacancy formation has been found to be hindered along the perimeter of the cluster, while it is promoted underneath the cluster, and is almost unaffected on the surface sites close to the cluster. On the other hand, barriers for the H2 dissociation and the formation of water by H and HO association are lowered with respect to the most favored reaction path found on clean CeO2. These results highlight the key role of metal structures and their underlying oxide support, and especially the three-phase boundary between the gas phase, Ag, and CeO2 as catalysts to such reactions, suggesting potential application as anodic electrocatalysts in fuel cells for example.


2019 - Reducibility of Ag- and Cu-Modified Ultrathin Epitaxial Cerium Oxide Films [Articolo su rivista]
Gasperi, G.; Brugnoli, L.; Pedone, A.; Menziani, M. C.; Valeri, S.; Luches, P.
abstract

The functionality of cerium oxide, and in particular its reactivity, can be significantly altered by the addition of diluted cationic species with different electronic properties as compared to cerium. We investigate the modifications induced by Ag and Cu as modifier cations in cerium oxide ultrathin epitaxial films. The reducibility is assessed by following the modifications of the oxidation state of surface Ce ions by X-ray photoemission spectroscopy, during thermal treatments in ultrahigh vacuum and oxygen partial pressure. A significantly higher reducibility is observed in Ag- and Cu-modified films as compared to pure CeO2 films of the same thickness. The thermal stability of the cation modifier concentration and the changes of the surface structure with the reducing treatments are also discussed. The modifications induced in the material are explained by comparison with density functional theory calculations, which indicate that the oxygen vacancy formation energy is significantly modified by the addition of Ag or Cu in the cerium oxide matrix. The obtained results are of help in view of a rational design of catalysts with optimized performance.


2018 - Assessment of Density Functional Approximations for Highly Correlated Oxides: The Case of CeO2 and Ce2O3 [Articolo su rivista]
Brugnoli, Luca; Ferrari, Anna Maria; Civalleri, Bartolomeo; Pedone, Alfonso; Menziani, Maria Cristina
abstract

CeO2 based materials are very attractive as catalytic components for industrial processes and environmentally friendly technologies; therefore, a reliable and computationally affordable theoretical description of the main properties of ceria is needed. In particular, the description of the interconversion between the Ce(IV) and Ce(III) oxidation states, on which lies the main chemical features of the cerium oxide, results in quite a challenge at the Density Functional Theory level. Here, we tested several density functional approximations, spanning from GGA to hybrid (Global, Meta-Global, and Range Separated Corrected) functionals, on the structural, vibrational, electronic, and thermochemical properties of bulk CeO2 and Ce2O3. GGA and Meta-GGA xc best predict the thermochemical data, while the discrepancies increase with the introduction of the exact exchange in hybrid functionals. Overall, the Short Range Corrected and Global Hybrid functionals with a percentage of Exact Exchange between 16 and 25 give the best description of the crystal properties. Then, a group of the best performing functionals has been tested on the formation energy of an oxygen vacancy at the (111) CeO2 surface. In general, increasing the amount of exact exchange in the hybrid functionals leads to a better description of the localized Ce 4f states, while the energy of formation of the O vacancy decreases, worsening compared to the experiment.