Nuova ricerca

FRANCESCO CANDELIERE

Assegnista di ricerca
BIOGEST-SITEIA-Centro Interdipartimentale Miglioramento e Valorizzazione Risorse Biologiche Agro-alimentari


Home |


Pubblicazioni

2024 - Fermentative processes for the upcycling of xylose to xylitol by immobilized cells of Pichia fermentans WC1507 [Articolo su rivista]
Ranieri, R.; Candeliere, F.; Moreno-García, J.; Mauricio, J. C.; Rossi, M.; Raimondi, S.; Amaretti, A.
abstract

Xylitol is a pentose-polyol widely applied in the food and pharmaceutical industry. It can be produced from lignocellulosic biomass, valorizing second-generation feedstocks. Biotechnological production of xylitol requires scalable solutions suitable for industrial scale processes. Immobilized-cells systems offer numerous advantages. Although fungal pellet carriers have gained attention, their application in xylitol production remains unexplored. In this study, the yeast strain P. fermentans WC 1507 was employed for xylitol production. The optimal conditions were observed with free-cell cultures at pH above 3.5, low oxygenation, and medium containing (NH4)(2)SO4 and yeast extract as nitrogen sources (xylitol titer 79.4 g/L, Y-P/S 66.3%, and volumetric productivity 1.3 g/L/h). Yeast cells were immobilized using inactive Aspergillus oryzae pellet mycelial carrier (MC) and alginate beads (AB) and were tested in flasks over three consecutive production runs. Additionally, the effect of a 0.2% w/v alginate layer, coating the outer surface of the carriers (cMC and cAB, respectively), was examined. While Y-P/S values observed with both immobilized and free cells were similar, the immobilized cells exhibited lower final xylitol titer and volumetric productivity, likely due to mass transfer limitations. AB and cAB outperformed MC and cMC. The uncoated AB carriers were tested in a laboratory-scale airlift bioreactor, which demonstrated a progressive increase in xylitol production in a repeated batch process: in the third run, a xylitol titer of 63.0 g/L, Y-P/S of 61.5%, and volumetric productivity of 0.52 g/L/h were achieved. This study confirmed P. fermentans WC 1507 as a promising strain for xylitol production in both free- and entrapped-cells systems. Considering the performance of the wild strain, a metabolic engineering intervention aiming at further improving the efficiency of xylitol production could be justified. MC and AB proved to be viable supports for cell immobilization, but additional process development is necessary to identify the optimal bioreactor configuration and fermentation conditions.


2024 - Genomic and functional analysis of the mucinolytic species Clostridium celatum, Clostridium tertium, and Paraclostridium bifermentans [Articolo su rivista]
Candeliere, Francesco; Musmeci, Eliana; Sola, Laura; Amaretti, Alberto; Raimondi, Stefano; Rossi, Maddalena
abstract

: Mucins are large glycoproteins whose degradation requires the expression of several glycosil hydrolases to catalyze the cleavage of the oligosaccharide chains and release monosaccharides that can be assimilated. In this study, we present a characterization on the strains Clostridium celatum WC0700, Clostridium tertium WC0709, and Paraclostridium bifermentans WC0705. These three strains were previously isolated from enrichment cultures on mucin of fecal samples from healthy subjects and can use mucin as sole carbon and nitrogen source. Genome analysis and in vitro functional analysis of these strains elucidated their physiological and biochemical features. C. celatum WC0700 harbored the highest number of glycosyl hydrolases specific for mucin degradation, while P. bifermentans WC0705 had the least. These predicted differences were confirmed growing the strains on 5 mucin-decorating monosaccharides (L-fucose, N-Acetylneuraminic acid, galactose, N-acetylgalactosamine, and N-acetylglucosamine) as only source of carbon. Fermenting mucin, they all produced formic, acetic, propionic, butyric, isovaleric, and lactic acids, and ethanol; acetic acid was the main primary metabolite. Further catabolic capabilities were investigated, as well as antibiotic susceptibility, biofilm formation, tolerance to oxygen and temperature. The potential pathogenicity of the strains was evaluated through in silico research of virulence factors. The merge between comparative and functional genomics and biochemical/physiological characterization provided a comprehensive view of these mucin degraders, reassuring on the safety of these species and leaving ample scope for deeper investigations on the relationship with the host and for assessing if some relevant health-promoting effect could be ascribed to these SCFA producing species.


2024 - Good and bad dispositions between archaea and bacteria in the human gut: New insights from metagenomic survey and co-occurrence analysis [Articolo su rivista]
Candeliere, F.; Sola, L.; Raimondi, S.; Rossi, M.; Amaretti, A.
abstract

Archaea are an understudied component of the human microbiome. In this study, the gut archaeome and bacteriome of 60 healthy adults from different region were analyzed by whole-genome shotgun sequencing. Archaea were ubiquitously found in a wide range of abundances, reaching up to 7.2 %. The dominant archaeal phylum was Methanobacteriota, specifically the family Methanobacteriaceae, encompassing more than 50 % of Archaea in 50 samples. The previously underestimated Thermoplasmatota, mostly composed of Methanomassiliicoccaceae, dominated in 10 subjects (>50 %) and was present in all others except one. Halobacteriota, the sole other archaeal phylum, occurred in negligible concentration, except for two samples (4.6–4.8 %). This finding confirmed that the human gut archaeome is primarily composed of methanogenic organisms and among the known methanogenic pathway: i) hydrogenotrophic reduction of CO2 is the predominant, being the genus Methanobrevibacter and the species Methanobrevibacter smithii the most abundant in the majority of the samples; ii) the second pathway, that involved Methanomassiliicoccales, was the hydrogenotrophic reduction of methyl-compounds; iii) dismutation of acetate or methyl-compounds seemed to be absent. Co-occurrence analysis allowed to unravel correlations between Archaea and Bacteria that shapes the overall structure of the microbial community, allowing to depict a clearer picture of the human gut archaeome.


2024 - Production of arabitol from glycerol by immobilized cells of Wickerhamomyces anomalus WC 1501 [Articolo su rivista]
Ranieri, Raffaella; Candeliere, Francesco; Sola, Laura; Leonardi, Alan; Rossi, Maddalena; Amaretti, Alberto; Raimondi, Stefano
abstract

Polyalcohols such as arabitol are among the main targets of biorefineries aiming to upcycle wastes and cheap substrates. In previous works Wickerhamomyces anomalus WC 1501 emerged as an excellent arabitol producer utilizing glycerol. Arabitol production by this strain is not growth associated, therefore, in this study, pre-grown cells were entrapped in calcium alginate beads (AB) and utilized for glycerol transformation to arabitol. Flasks experiments aimed to assess the medium composition (i.e., the concentration of inorganic and organic nitrogen sources and phosphates) and to establish the appropriate carrier-to-medium proportion. In flasks, under the best conditions of ammonium limitation and the carrier:medium ratio of 1:3 (w/v), 82.7 g/L glycerol were consumed in 168 h, yielding 31.2 g/L arabitol, with a conversion of 38% and volumetric productivity of 186 mg/mL/h. The process with immobilized cells was transferred to laboratory scale bioreactors with different configurations: stirred tank (STR), packed bed (PBR), fluidized bed (FBR), and airlift (ALR) bioreactors. The STR experienced oxygen limitation due to the need to maintain low stirring to preserve AB integrity and performed worse than flasks. Limitations in diffusion and mass transfer of oxygen and/or nutrients characterized also the PBR and the FBR and were partially relieved only in ALR, where 89.4 g/L glycerol were consumed in 168 h, yielding 38.1 g/L arabitol, with a conversion of 42% and volumetric productivity of 227 mg/mL/h. When the ALR was supplied with successive pulses of concentrated glycerol to replenish the glycerol as it was being consumed, 117 g/L arabitol were generated in 500 h, consuming a total of 285 g/L glycerol, with a 41% and 234 mg/L/h. The study strongly supports the potential of W. anomalus WC 1501 for efficient glycerol-to-arabitol conversion using immobilized cells. While the yeast shows promise by remaining viable and active for extended periods, further optimization is required, especially regarding mixing and oxygenation. Improving the stability of the immobilization process is also crucial for reusing pre-grown cells in multiple cycles, reducing dead times, biomass production costs, and enhancing the economic feasibility of the process.


2023 - Ce-MBGs Loaded with Gentamicin: Characterization and In Vitro Evaluation [Articolo su rivista]
Fraulini, Francesca; Raimondi, Stefano; Candeliere, Francesco; Ranieri, Raffaella; Zambon, Alfonso; Lusvardi, Gigliola
abstract

Mesoporous Bioactive Glasses (MBGs) are biomaterials widely used in tissue engineering, particularly for hard tissue regeneration. One of the most frequent postoperative complications following a biomaterial surgical implant is a bacterial infection, which usually requires treatment by the systemic administration of drugs (e.g., antibiotics). In order to develop biomaterials with antibiotic properties, we investigated cerium-doped MBGs (Ce-MBGs) as in situ-controlled drug delivery systems (DDSs) of gentamicin (Gen), a wide spectrum antibiotic commonly employed against bacteria responsible of postoperative infections. Here we report the optimization of Gen loading on MBGs and the evaluation of the antibacterial properties and of retention of bioactivity and antioxidant properties of the resulting materials. The Gen loading (up to 7%) was found to be independent from cerium content, and the optimized Gen-loaded Ce-MBGs retain significant bioactivity and antioxidant properties. The antibacterial efficacy was verified up to 10 days of controlled release. These properties make Gen-loaded Ce-MBGs interesting candidates for simultaneous hard tissue regeneration and in situ antibiotic release.


2023 - Profiling of the intestinal community of Clostridia: taxonomy and evolutionary analysis [Articolo su rivista]
Candeliere, Francesco; Musmeci, Eliana; Amaretti, Alberto; Sola, Laura; Raimondi, Stefano; Rossi, Maddalena
abstract

: Aim: Clostridia are relevant commensals of the human gut due to their major presence and correlations to the host. In this study, we investigated intestinal Clostridia of 51 healthy subjects and reconstructed their taxonomy and phylogeny. The relatively small number of intestinal Clostridia allowed a systematic whole genome approach based on average amino acid identity (AAI) and core genome with the aim of revising the current classification into genera and determining evolutionary relationships. Methods: 51 healthy subjects' metagenomes were retrieved from public databases. After the dataset's validation through comparison with Human Microbiome Project (HMP) samples, the metagenomes were profiled using MetaPhlAn3 to identify the population ascribed to the class Clostridia. Intestinal Clostridia genomes were retrieved and subjected to AAI analysis and core genome identification. Phylogeny investigation was conducted with RAxML and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithms, and SplitsTree for split decomposition. Results: 225 out of 406 bacterial taxonomic units were ascribed to Bacillota [Firmicutes], among which 124 were assigned to the class Clostridia. 77 out of the 124 taxonomic units were referred to a species, altogether covering 87.7% of Clostridia abundance. According to the lowest AAI genus boundary set at 55%, 15 putative genera encompassing more than one species (G1 to G15) were identified, while 19 species did not cluster with any other one and each appeared to belong to a diverse genus. Phylogenetic investigations highlighted that most of the species clustered into three main evolutive clades. Conclusion: This study shed light on the species of Clostridia colonizing the gut of healthy adults and pinpointed several gaps in knowledge regarding the taxonomy and the phylogeny of Clostridia.


2023 - Sour Beer as Bioreservoir of Novel Craft Ale Yeast Cultures [Articolo su rivista]
Nasuti, C.; Ruffini, J.; Sola, L.; Di Bacco, M.; Raimondi, S.; Candeliere, F.; Solieri, L.
abstract

: The increasing demand for craft beer is driving the search for novel ale yeast cultures from brewing-related wild environments. The focus of bioprospecting for craft cultures is to identify feral yeasts suitable to imprint unique sensorial attributes onto the final product. Here, we integrated phylogenetic, genotypic, genetic, and metabolomic techniques to demonstrate that sour beer during aging in wooden barrels is a source of suitable craft ale yeast candidates. In contrast to the traditional lambic beer maturation phase, during the aging of sour-matured production-style beer, different biotypes of Saccharomyces cerevisiae dominated the cultivable in-house mycobiota, which were followed by Pichia membranifaciens, Brettanomyces bruxellensis, and Brettanomyces anomalus. In addition, three putative S. cerevisiae × Saccharomyces uvarum hybrids were identified. S. cerevisiae feral strains sporulated, produced viable monosporic progenies, and had the STA1 gene downstream as a full-length promoter. During hopped wort fermentation, four S. cerevisiae strains and the S. cerevisiae × S. uvarum hybrid WY213 exceeded non-Saccharomyces strains in fermentative rate and ethanol production except for P. membranifaciens WY122. This strain consumed maltose after a long lag phase, in contrast to the phenotypic profile described for the species. According to the STA1+ genotype, S. cerevisiae partially consumed dextrin. Among the volatile organic compounds (VOCs) produced by S. cerevisiae and the S. cerevisiae × S. uvarum hybrid, phenylethyl alcohol, which has a fruit-like aroma, was the most prevalent. In conclusion, the strains characterized here have relevant brewing properties and are exploitable as indigenous craft beer starters.


2022 - Improved fed-batch processes with Wickerhamomyces anomalus WC 1501 for the production of D-arabitol from pure glycerol [Articolo su rivista]
Raimondi, Stefano; Foca, Giorgia; Ulrici, Alessandro; Destro, Lorenza; Leonardi, Alan; Buzzi, Raissa; Candeliere, Francesco; Rossi, Maddalena; Amaretti, Alberto
abstract

D-Arabitol, a five-carbon sugar alcohol, represents a main target of microbial biorefineries aiming to valorize cheap substrates. The yeast Wickerhamomyces anomalus WC 1501 is known to produce arabitol in a glycerol-based nitrogen-limited medium and preliminary fed-batch processes with this yeast were reported to yield 18.0 g/L arabitol.


2022 - Indole and p-cresol in feces of healthy subjects: Concentration, kinetics, and correlation with microbiome [Articolo su rivista]
Candeliere, Francesco; Simone, Marta; Leonardi, Alan; Rossi, Maddalena; Amaretti, Alberto; Raimondi, Stefano
abstract

Indole and p-cresol are precursors of the most important uremic toxins, generated from the fermentation of amino acids tryptophan and tyrosine by the proteolytic community of intestinal bacteria. The present study focused on the relationship between the microbiome composition, the fecal levels of indole and p-cresol, and their kinetics of generation/degradation in fecal cultures. The concentration of indole and p-cresol, the volatilome, the dry weight, and the amount of ammonium and carbohydrates were analyzed in the feces of 10 healthy adults. Indole and p-cresol widely differed among samples, laying in the range of 1.0–19.5 μg/g and 1.2–173.4 μg/g, respectively. Higher fecal levels of indole and p-cresol were associated with lower carbohydrates and higher ammonium levels, that are markers of a more pronounced intestinal proteolytic metabolism. Positive relationship was observed also with the dry/wet weight ratio, indicator of prolonged intestinal retention of feces. p-cresol and indole presented a statistically significant negative correlation with OTUs of uncultured Bacteroidetes and Firmicutes, the former belonging to Bacteroides and the latter to the families Butyricicoccaceae (genus Butyricicoccus), Monoglobaceae (genus Monoglobus), Lachnospiraceae (genera Faecalibacterium, Roseburia, and Eubacterium ventriosum group). The kinetics of formation and/or degradation of indole and p-cresol was investigated in fecal slurries, supplemented with the precursor amino acids tryptophan and tyrosine in strict anaerobiosis. The presence of the precursors bursted indole production but had a lower effect on the rate of p-cresol formation. On the other hand, supplementation with indole reduced the net rate of formation. The taxa that positively correlated with fecal levels of uremic toxins presented a positive correlation also with p-cresol generation rate in biotransformation experiments. Moreover other bacterial groups were positively correlated with generation rate of p-cresol and indole, further expanding the range of taxa associated to production of p-cresol (Bacteroides, Alistipes, Eubacterium xylanophylum, and Barnesiella) and indole (e.g., Bacteroides, Ruminococcus torques, Balutia, Dialister, Butyricicoccus). The information herein presented contributes to disclose the relationships between microbiota composition and the production of uremic toxins, that could provide the basis for probiotic intervention on the gut microbiota, aimed to prevent the onset, hamper the progression, and alleviate the impact of nephropaties.


2022 - Microbiota Survey of Sliced Cooked Ham During the Secondary Shelf Life [Articolo su rivista]
Spampinato, Gloria; Candeliere, Francesco; Amaretti, Alberto; Licciardello, Fabio; Rossi, Maddalena; Raimondi, Stefano
abstract


2022 - Phylogenomic analysis of the genus Leuconostoc [Articolo su rivista]
Raimondi, Stefano; Candeliere, Francesco; Amaretti, Alberto; Costa, Stefania; Vertuani, Silvia; Spampinato, Gloria; Rossi, Maddalena
abstract

Leuconostoc is a genus of saccharolytic heterofermentative lactic acid bacteria that inhabit plant-derived matrices and a variety of fermented foods (dairy products, dough, milk, vegetables, and meats), contributing to desired fermentation processes or playing a role in food spoilage. At present, the genus encompasses 17 recognized species. In total, 216 deposited genome sequences of Leuconostoc were analyzed, to check the delineation of species and to infer their evolutive genealogy utilizing a minimum evolution tree of Average Nucleotide Identity (ANI) and the core genome alignment. Phylogenomic relationships were compared to those obtained from the analysis of 16S rRNA, pheS, and rpoA genes. All the phylograms were subjected to split decomposition analysis and their topologies were compared to check the ambiguities in the inferred phylogenesis. The minimum evolution ANI tree exhibited the most similar topology with the core genome tree, while single gene trees were less adherent and provided a weaker phylogenetic signal. In particular, the 16S rRNA gene failed to resolve several bifurcations and Leuconostoc species. Based on an ANI threshold of 95%, the organization of the genus Leuconostoc could be amended, redefining the boundaries of the species L. inhae, L. falkenbergense, L. gelidum, L. lactis, L. mesenteroides, and L. pseudomesenteroides. Two strains currently recognized as L. mesenteroides were split into a separate lineage representing a putative species (G16), phylogenetically related to both L. mesenteroides (G18) and L. suionicum (G17). Differences among the four subspecies of L. mesenteroides were not pinpointed by ANI or by the conserved genes. The strains of L. pseudomesenteroides were ascribed to two putative species, G13 and G14, the former including also all the strains presently belonging to L. falkenbergense. L. lactis was split into two phylogenetically related lineages, G9 and G10, putatively corresponding to separate species and both including subgroups that may correspond to subspecies. The species L. gelidum and L. gasicomitatum were closely related but separated into different species, the latter including also L. inhae strains. These results, integrating information of ANI, core genome, and housekeeping genes, complemented the taxonomic delineation with solid information on the phylogenetic lineages evolved within the genus Leuconostoc.


2022 - β-Glucuronidase Pattern Predicted From Gut Metagenomes Indicates Potentially Diversified Pharmacomicrobiomics [Articolo su rivista]
Candeliere, Francesco; Raimondi, Stefano; Ranieri, Raffaella; Musmeci, Eliana; Zambon, Alfonso; Amaretti, Alberto; Rossi, Maddalena
abstract

: β-glucuronidases (GUS) of intestinal bacteria remove glucuronic acid from glucoronides, reversing phase II metabolism of the liver and affecting the level of active deconjugated metabolites deriving from drugs or xenobiotics. Two hundred seventy-nine non-redundant GUS sequences are known in the gut microbiota, classified in seven structural categories (NL, L1, L2, mL1, mL2, mL1,2, and NC) with different biocatalytic properties. In the present study, the intestinal metagenome of 60 healthy subjects from five geographically different cohorts was assembled, binned, and mined to determine qualitative and quantitative differences in GUS profile, potentially affecting response to drugs and xenobiotics. Each metagenome harbored 4-70 different GUS, altogether accounting for 218. The amount of intestinal bacteria with at least one GUS gene was highly variable, from 0.7 to 82.2%, 25.7% on average. No significant difference among cohorts could be identified, except for the Ethiopia (ETH) cohort where GUS-encoding bacteria were significantly less abundant. The structural categories were differently distributed among the metagenomes, but without any statistical significance related to the cohorts. GUS profiles were generally dominated by the category NL, followed by mL1, L2, and L1. The GUS categories most involved in the hydrolysis of small molecules, including drugs, are L1 and mL1. Bacteria contributing to these categories belonged to Bacteroides ovatus, Bacteroides dorei, Bacteroides fragilis, Escherichia coli, Eubacterium eligens, Faecalibacterium prausnitzii, Parabacteroides merdae, and Ruminococcus gnavus. Bacteria harboring L1 GUS were generally scarcely abundant (<1.3%), except in three metagenomes, where they reached up to 24.3% for the contribution of E. coli and F. prausnitzii. Bacteria harboring mL1 GUS were significantly more abundant (mean = 4.6%), with Bacteroides representing a major contributor. Albeit mL1 enzymes are less active than L1 ones, Bacteroides likely plays a pivotal role in the deglucuronidation, due to its remarkable abundance in the microbiomes. The observed broad interindividual heterogeneity of GUS profiles, particularly of the L1 and mL1 categories, likely represent a major driver of pharmacomicrobiomics variability, affecting drug response and toxicity. Different geographical origins, genetic, nutritional, and lifestyle features of the hosts seemed not to be relevant in the definition of glucuronidase activity, albeit they influenced the richness of the GUS profile.


2021 - Comparative Genomics of Leuconostoc carnosum [Articolo su rivista]
Candeliere, F.; Raimondi, S.; Spampinato, G.; Tay, M. Y. F.; Amaretti, A.; Schlundt, J.; Rossi, M.
abstract

Leuconostoc carnosum is a known colonizer of meat-related food matrices. It reaches remarkably high loads during the shelf life in packaged meat products and plays a role in spoilage, although preservative effects have been proposed for some strains. In this study, the draft genomes of 17 strains of L. carnosum (i.e., all the strains that have been sequenced so far) were compared to decipher their metabolic and functional potential and to determine their role in food transformations. Genome comparison and pathway reconstruction indicated that L. carnosum is a compact group of closely related heterofermentative bacteria sharing most of the metabolic features. Adaptation to a nitrogen-rich environment, such as meat, is evidenced by 23 peptidase genes identified in the core genome and by the autotrophy for nitrogen compounds including several amino acids, vitamins, and cofactors. Genes encoding the decarboxylases yielding biogenic amines were not present. All the strains harbored 1–4 of 32 different plasmids, bearing functions associated to proteins hydrolysis, transport of amino acids and oligopeptides, exopolysaccharides, and various resistances (e.g., to environmental stresses, bacteriophages, and heavy metals). Functions associated to bacteriocin synthesis, secretion, and immunity were also found in plasmids. While genes for lactococcin were found in most plasmids, only three harbored the genes for leucocin B, a class IIa antilisterial bacteriocin. Determinants of antibiotic resistances were absent in both plasmids and chromosomes.


2021 - Draft genome sequence of the mucin degrader clostridium tertium wc0709 [Articolo su rivista]
Musmeci, E.; Candeliere, F.; Amaretti, A.; Rossi, M.; Raimondi, S.
abstract

The draft genome sequence of Clostridium tertium WC0709, a gut bacterium able to use mucin in pure culture as the sole carbon and nitrogen source, is presented here. The genome sequence of C. tertium will provide valuable references for comparative genome analysis and for studying the relationship with the host.


2021 - Identification of mucin degraders of the human gut microbiota [Articolo su rivista]
Raimondi, S.; Musmeci, E.; Candeliere, F.; Amaretti, A.; Rossi, M.
abstract

Mucins are large glycoproteins consisting of approximately 80% of hetero-oligosaccharides. Gut mucin degraders of healthy subjects were investigated, through a culture dependent and independent approach. The faeces of five healthy adults were subjected to three steps of anaerobic enrichment in a medium with sole mucins as carbon and nitrogen sources. The bacterial community was compared before and after the enrichment by 16S rRNA gene profiling. Bacteria capable of fermenting sugars, such as Anaerotruncus, Holdemania, and Enterococcaceae likely took advantage of the carbohydrate chains. Escherichia coli and Enterobacteriaceae, Peptococcales, the Coriobacteriale Eggerthella, and a variety of Clostridia such as Oscillospiraceae, Anaerotruncus, and Lachnoclostridium, significantly increased and likely participated to the degradation of the protein backbone of mucin. The affinity of E. coli and Enterobacteriaceae for mucin may facilitate the access to the gut mucosa, promoting gut barrier damage and triggering systemic inflammatory responses. Only three species of strict anaerobes able to grow on mucin were isolated from the enrichments of five different microbiota: Clostridium disporicum, Clostridium tertium, and Paraclostridium benzoelyticum. The limited number of species isolated confirms that in the gut the degradation of these glycoproteins results from cooperation and cross-feeding among several species exhibiting different metabolic capabilities.


2021 - Multivariate Analysis in Microbiome Description: Correlation of Human Gut Protein Degraders, Metabolites, and Predicted Metabolic Functions [Articolo su rivista]
Raimondi, S.; Calvini, R.; Candeliere, F.; Leonardi, A.; Ulrici, A.; Rossi, M.; Amaretti, A.
abstract

Protein catabolism by intestinal bacteria is infamous for releasing many harmful compounds, negatively affecting the health status, both locally and systemically. In a previous study, we enriched in protein degraders the fecal microbiota of five subjects, utilizing a medium containing protein and peptides as sole fermentable substrates and we monitored their evolution by 16S rRNA gene profiling. In the present study, we fused the microbiome data and the data obtained by the analysis of the volatile organic compounds (VOCs) in the headspace of the cultures. Then, we utilized ANOVA simultaneous component analysis (ASCA) to establish a relationship between metabolites and bacteria. In particular, ASCA allowed to separately assess the effect of subject, time, inoculum concentration, and their binary interactions on both microbiome and volatilome data. All the ASCA submodels pointed out a consistent association between indole and Escherichia–Shigella, and the relationship of butyric, 3-methyl butanoic, and benzenepropanoic acids with some bacterial taxa that were major determinants of cultures at 6 h, such as Lachnoclostridiaceae (Lachnoclostridium), Clostridiaceae (Clostridium sensu stricto), and Sutterellaceae (Sutterella and Parasutterella). The metagenome reconstruction with PICRUSt2 and its functional annotation indicated that enrichment in a protein-based medium affected the richness and diversity of functional profiles, in the face of a decrease of richness and evenness of the microbial community. Linear discriminant analysis (LDA) effect size indicated a positive differential abundance (p < 0.05) for the modules of amino acid catabolism that may be at the basis of the changes of VOC profile. In particular, predicted genes encoding functions belonging to the superpathways of ornithine, arginine, and putrescine transformation to GABA and eventually to succinyl-CoA, of methionine degradation, and various routes of breakdown of aromatic compounds yielding succinyl-CoA or acetyl-CoA became significantly more abundant in the metagenome of the bacterial community.


2021 - Phenotypic Traits and Immunomodulatory Properties of Leuconostoc carnosum Isolated From Meat Products [Articolo su rivista]
Raimondi, S.; Spampinato, G.; Candeliere, F.; Amaretti, A.; Brun, P.; Castagliuolo, I.; Rossi, M.
abstract

Twelve strains of Leuconostoc carnosum from meat products were investigated in terms of biochemical, physiological, and functional properties. The spectrum of sugars fermented by L. carnosum strains was limited to few mono- and disaccharides, consistently with the natural habitats of the species, including meat and fermented vegetables. The strains were able to grow from 4 to 37C with an optimum of approximately 32.5C. The ability to grow at temperatures compatible with refrigeration and in presence of up to 60 g/L NaCl explains the high loads of L. carnosum frequently described in many meat-based products. Six strains produced exopolysaccharides, causing a ropy phenotype of colonies, according to the potential involvement on L. carnosum in the appearance of slime in packed meat products. On the other side, the study provides evidence of a potential protective role of L. carnosum WC0321 and L. carnosum WC0323 against Listeria monocytogenes, consistently with the presence in these strains of the genes encoding leucocin B. Some meat-based products intended to be consumed without cooking may harbor up to 108 CFU/g of L. carnosum; therefore, we investigated the potential impact of this load on health. No strains survived the treatment with simulated gastric juice. Three selected strains were challenged for the capability to colonize a mouse model and their immunomodulatory properties were investigated. The strains did not colonize the intestine of mice during 10 days of daily dietary administration. Intriguingly, despite the loss of viability during the gastrointestinal transit, the strains exhibited different immunomodulatory effect on the maturation of dendritic cells in vivo, the extent of which correlated to the production of exopolysaccharides. The ability to stimulate the mucosal associated immune system in such probiotic-like manner, the general absence of antibiotic resistance genes, and the lack of the biosynthetic pathways for biogenic amines should reassure on the safety of this species, with potential for exploitation of selected starters.


2021 - Vaginal and anal microbiome during chlamydia trachomatis infections [Articolo su rivista]
Raimondi, S.; Candeliere, F.; Amaretti, A.; Foschi, C.; Morselli, S.; Gaspari, V.; Rossi, M.; Marangoni, A.
abstract

Background. Chlamydia trachomatis (CT) is the agent of the most common bacterial sexually transmitted infection worldwide, with a significant impact on women’s health. Despite the increasing number of studies about the vaginal microbiome in women with CT infections, information about the composition of the anal microbiome is still lacking. Here, we assessed the bacterial community profiles of vaginal and anal ecosystems associated or not with CT infection in a cohort of Caucasian young women. Methods. A total of 26 women, including 10 with a contemporary vaginal and anorectal CT infection, were enrolled. Composition of vaginal and anal microbiome was studied by 16S rRNA gene profiling. Co-occurrence networks of bacterial communities and metagenome metabolic functions were determined. Results. In case of CT infection, both vaginal and anal environments were characterized by a degree of dysbiosis. Indeed, the vaginal microbiome of CT-positive women were depleted in lactobacilli, with a significant increase in dysbiosis-associated bacteria (e.g., Sneathia, Parvimonas, Megasphaera), whereas the anal microbiota of CT-infected women was characterized by higher levels of Parvimonas and Pseudomonas and lower levels of Escherichia. Interestingly, the microbiome of anus and vagina had numerous bacterial taxa in common, reflecting a significant microbial ‘sharing’ between the two sites. In the vaginal environment, CT positively correlated with Ezakiella spp. while Gardnerella vaginalis co-occurred with several dysbiosis-related microbes, regardless of CT vaginal infection. The vaginal microbiome of CT-positive females exhibited a higher involvement of chorismate and aromatic amino acid biosynthesis, as well as an increase in mixed acid fermentation. Conclusions. These data could be useful to set up new diagnostic/prognostic tools, offering new perspectives for the control of chlamydial infections.


2020 - Antibiotic resistance, virulence factors, phenotyping, and genotyping of non–escherichia coli enterobacterales from the gut microbiota of healthy subjects [Articolo su rivista]
Amaretti, A.; Righini, L.; Candeliere, F.; Musmeci, E.; Bonvicini, F.; Gentilomi, G. A.; Rossi, M.; Raimondi, S.
abstract

Non-Escherichia coli Enterobacterales (NECE) can colonize the human gut and may present virulence determinants and phenotypes that represent severe heath concerns. Most information is available for virulent NECE strains, isolated from patients with an ongoing infection, while the commensal NECE population of healthy subjects is understudied. In this study, 32 NECE strains were isolated from the feces of 20 healthy adults. 16S rRNA gene sequencing and mass spectrometry attributed the isolates to Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Enterobacter kobei, Citrobacter freundii, Citrobacter amalonaticus, Cronobacter sp., and Hafnia alvei, Morganella morganii, and Serratia liquefaciens. Multiplex PCR revealed that K. pneumoniae harbored virulence genes for adhesins (mrkD, ycfM, and kpn) and enterobactin (entB) and, in one case, also for yersiniabactin (ybtS, irp1, irp2, and fyuA). Virulence genes were less numerous in the other NECE species. Biofilm formation was spread across all the species, while curli and cellulose were mainly produced by Citrobacter and Enterobacter. Among the most common antibiotics, amoxicillin-clavulanic acid was the sole against which resistance was observed, only Klebsiella strains being susceptible. The NECE inhabiting the intestine of healthy subjects have traits that may pose a health threat, taking into account the possibility of horizontal gene transfer.


2020 - Draft Genome Sequences of 12 Leuconostoc carnosum Strains Isolated from Cooked Ham Packaged in a Modified Atmosphere and from Fresh Sausages [Articolo su rivista]
Candeliere, Francesco; Raimondi, Stefano; Spampinato, Gloria; Tay, Moon Yue Feng; Amaretti, Alberto; Schlundt, Joergen; Rossi, Maddalena
abstract

Leuconostoc carnosum is a lactic acid bacterium that preferentially colonizes meat. In this work, we present the draft genome sequences of 12 Leuconostoc carnosum strains isolated from modified-atmosphere-packaged cooked ham and fresh sausages. Three strains harbor bacteriocin genes.


2020 - Effect of Rearing Temperature on Growth and Microbiota Composition of Hermetia illucens [Articolo su rivista]
Raimondi, Stefano; Spampinato, Gloria; Macavei, Laura Ioana; Lugli, Linda; Candeliere, Francesco; Rossi, Maddalena; Maistrello, Lara; Amaretti, Alberto
abstract

The potential utilization of black soldier fly (Hermetia illucens) as food or feed is interesting due to the nutritive value and the sustainability of the rearing process. In the present study, larvae and prepupae of H. illucens were reared at 20, 27, and 33 °C, to determine whether temperature affects the whole insect microbiota, described using microbiological risk assessment techniques and 16S rRNA gene survey. The larvae efficiently grew across the tested temperatures. Higher temperatures promoted faster larval development and greater final biomass but also higher mortality. Viable Enterobacteriaceae, Bacillus cereus, Campylobacter, Clostridium perfringens, coagulase-positive staphylococci, Listeriaceae, and Salmonella were detected in prepupae. Campylobacter and Listeriaceae counts got higher with the increasing temperature. Based on 16S rRNA gene analysis, the microbiota of larvae was dominated by Providencia (>60%) and other Proteobateria (mainly Klebsiella) and evolved to a more complex composition in prepupae, with a bloom of Actinobacteria, Bacteroidetes, and Bacilli, while Providencia was still present as the main component. Prepupae largely shared the microbiota with the frass where it was reared, except for few lowly represented taxa. The rearing temperature was negatively associated with the amount of Providencia, and positively associated with a variety of other genera, such as Alcaligenes, Pseudogracilibacillus, Bacillus, Proteus, Enterococcus, Pediococcus, Bordetella, Pseudomonas, and Kerstersia. With respect to the microbiological risk assessment, attention should be paid to abundant genera, such as Bacillus, Myroides, Proteus, Providencia, and Morganella, which encompass species described as opportunistic pathogens, bearing drug resistances or causing severe morbidity.


2019 - Antibiotic Resistance, Virulence Factors, Phenotyping, and Genotyping of E. coli Isolated from the Feces of Healthy Subjects [Articolo su rivista]
Raimondi, S; Righini, L; Candeliere, F; Musmeci, Eliana; Bonvicini, F; Gentilomi, G; STARCIC ERJAVEC, Marjanca; Amaretti, A; Rossi, M
abstract

Escherichia coli may innocuously colonize the intestine of healthy subjects or may instigate infections in the gut or in other districts. This study investigated intestinal E. coli isolated from 20 healthy adults. Fifty-one strains were genotyped by molecular fingerprinting and analyzed for genetic and phenotypic traits, encompassing the profile of antibiotic resistance, biofilm production, the presence of surface structures (such as curli and cellulose), and their performance as recipients in conjugation experiments. A phylogroup classification and analysis of 34 virulence determinants, together with genes associated to the pks island (polyketide-peptide genotoxin colibactin) and conjugative elements, was performed. Most of the strains belonged to the phylogroups B1 and B2. The different phylogroups were separated in a principal coordinate space, considering both genetic and functional features, but not considering pulsed-field gel electrophoresis. Within the B2 and F strains, 12 shared the pattern of virulence genes with potential uropathogens. Forty-nine strains were sensitive to all the tested antibiotics. Strains similar to the potential pathogens innocuously inhabited the gut of healthy subjects. However, they may potentially act as etiologic agents of extra-intestinal infections and are susceptible to a wide range of antibiotics. Nevertheless, there is still the possibility to control infections with antibiotic therapy.


2019 - Longitudinal Survey of Fungi in the Human Gut: ITS Profiling, Phenotyping, and Colonization [Articolo su rivista]
Raimondi, Stefano; Amaretti, Alberto; Gozzoli, Caterina; Simone, Marta; Righini, Lucia; Candeliere, Francesco; Brun, Paola; Ardizzoni, Andrea; Colombari, Bruna; Paulone, Simona; Castagliuolo, Ignazio; Cavalieri, Duccio; Blasi, Elisabetta; Rossi, Maddalena; Peppoloni, Samuele
abstract

The fungal component of the intestinal microbiota of eight healthy subjects was studied over 12 months using metagenome survey and culture-based approaches. Aspergillus, Candida, Debaryomyces, Malassezia, Penicillium, Pichia, and Saccharomyces were the most recurrent and/or dominant fungal genera, according to metagenomic analysis. The biodiversity of fungal communities was lower and characterized by greater unevenness, when compared to bacterial microbiome. The dissimilarities both among subjects and over the time within the same subject suggested that most of the fungi passed through the gastro-intestinal tract (GIT) without becoming stable colonizers. Certain genera, such as Aspergillus and Penicillium, were isolated in a minority of cases, although they recurred abundantly and frequently in the metagenomics survey, likely being environmental or food-borne fungi that do not inhabit the GIT. Candida genus was recurrently detected. Candida albicans isolates dominated among the cultivable mycobiota and longitudinally persisted, likely as commensals inhabiting the intestine or regularly reaching it from Candida-colonized districts, such as the oral cavity. Other putative colonizers belonged to Candida zeylanoides, Geotrichum candidum, and Rhodotorula mucilaginosa, with persisting biotypes being identified. Phenotyping of fungal isolates indicated that C. albicans adhered to human epithelial cells more efficiently and produced greater amounts of biofilm in vitro than non-albicans Candida (NAC) and non-Candida fungi (NCF). The C. albicans isolates also induced the highest release of HBD-2 by human epithelial cells, further differing from NAC and NCF. Nine representative isolates were administered to mice to evaluate the ability to colonize the intestine. Only two out of three C. albicans strains persisted in stools of animals 2 weeks after the end of the oral administration, whereas NAC and NCF did not. These results confirm the allochthonous nature of most the intestinal fungi, while C. albicans appears to be commonly involved in stable colonization. A combination of specific genetic features in the microbe and in the host likely allow colonization from fungi normally present solely as passengers. It remains to be established if other species identified as potential colonizers, in addition to Candida, are true inhabitants of the GIT or rather reach the intestine spreading from other body districts.