Nuova ricerca

Enrico BENASSI

Assegnista di ricerca
Dipartimento di Scienze Fisiche, Informatiche e Matematiche sede ex-Matematica


Home |


Pubblicazioni

2024 - Dual Structure of a Vanadyl-Based Molecular Qubit Containing a Bis(β-diketonato) Ligand [Articolo su rivista]
Imperato, Manuel; Nicolini, Alessio; Boniburini, Matteo; Sartini, Daniele; Benassi, Enrico; Chiesa, Mario; Gigli, Lara; Liao, Yu-Kai; Raza, Arsen; Salvadori, Enrico; Sorace, Lorenzo; Cornia, Andrea
abstract

We designed [VO(bdhb)] (1′) as a new electronic qubit containing an oxovanadium(IV) ion (S = 1/2) embraced by a single bis(β-diketonato) ligand [H2bdhb = 1,3-bis(3,5-dioxo-1-hexyl)benzene]. The synthesis afforded three different crystal phases, all of which unexpectedly contain dimers with formula [(VO)2(bdhb)2] (1). A trigonal form (1h) with a honeycomb structure and 46% of solvent-accessible voids quantitatively transforms over time into a monoclinic solvatomorph 1m and minor amounts of a triclinic solventless phase (1a). In a static magnetic field, 1h and 1m have detectably slow magnetic relaxation at low temperatures through quantum tunneling and Raman mechanisms. Angle-resolved electron paramagnetic resonance (EPR) spectra on single crystals revealed signatures of low-dimensional magnetic behavior, which is solvatomorph-dependent, being the closest interdimer V···V separations (6.7−7.5 Å) much shorter than intramolecular V···V distances (11.9−12.1 Å). According to 1H diffusion ordered spectroscopy (DOSY) and EPR experiments, the complex adopts the desired monomeric structure in organic solution and its geometry was inferred from density functional theory (DFT) calculations. Spin relaxation measurements in a frozen toluene-d8/CD2Cl2 matrix yielded Tm values reaching 13 μs at 10 K, and coherent spin manipulations were demonstrated by Rabi nutation experiments at 70 K. The neutral quasi-macrocyclic structure, featuring nuclear spin-free donors and additional possibilities for chemical functionalization, makes 1′ a new convenient spin-coherent building block in quantum technologies.


2012 - Optical Excitations and Field Enhancement in Short Graphene Nanoribbons [Articolo su rivista]
Cocchi, Caterina; Prezzi, Deborah; Ruini, Alice; Benassi, Enrico; Marilia J., Caldas; Stefano, Corni; Molinari, Elisa
abstract

Abstract: The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semiempirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries.