Nuova ricerca

CHIARA NASUTI

Dottorando
Dipartimento di Scienze della Vita


Home |


Pubblicazioni

2023 - Impact of Spontaneous Fermentation and Inoculum with Natural Whey Starter on Peptidomic Profile and Biological Activities of Cheese Whey: A Comparative Study [Articolo su rivista]
MOHAMED IBRAHIM HELAL, Ahmed; Nasuti, Chiara; Sola, Laura; Sassi, Giada; Tagliazucchi, Davide; Solieri, Lisa
abstract

Fermentation is a promising solution to valorize cheese whey, the main by-product of the dairy industry. In Parmigiano Reggiano cheese production, natural whey starter (NWS), an undefined community of thermophilic lactic acid bacteria, is obtained from the previous day residual whey through incubation at gradually decreasing temperature after curd cooking. The aim of this study was to investigate the effect of fermentation regime (spontaneous (S) and NWS-inoculated (I-NWS)) on biofunctionalities and release of bioactive peptides during whey fermentation. In S and I-NWS trials proteolysis reached a peak after 24 h, which corresponded to the drop out in pH and the maximum increase in lactic acid. Biological activities increased as a function of fermentation time. NWS inoculum positively affected antioxidant activity, whilst S overcame I-NWS in angiotensin-converting enzyme (ACE) and DPP-IV (dipeptidyl peptidase IV) inhibitory activities. Peptidomics revealed more than 400 peptides, mainly derived from β-casein, κ-casein, and α-lactalbumin. Among them, 49 were bioactive and 21 were ACE-inhibitors. Semi-quantitative analysis strongly correlated ACE-inhibitory activity with the sum of the peptide abundance of ACE-inhibitory peptides. In both samples, lactotripeptide isoleucine-proline-proline (IPP) was higher than valine-proline-proline (VPP), with the highest content in S after 24 h of fermentation. In conclusion, we demonstrated the ability of whey endogenous microbiota and NWS to extensively hydrolyze whey proteins, promoting the release of bioactive peptides and improving protein digestibility.


2023 - Sour Beer as Bioreservoir of Novel Craft Ale Yeast Cultures [Articolo su rivista]
Nasuti, C.; Ruffini, J.; Sola, L.; Di Bacco, M.; Raimondi, S.; Candeliere, F.; Solieri, L.
abstract

: The increasing demand for craft beer is driving the search for novel ale yeast cultures from brewing-related wild environments. The focus of bioprospecting for craft cultures is to identify feral yeasts suitable to imprint unique sensorial attributes onto the final product. Here, we integrated phylogenetic, genotypic, genetic, and metabolomic techniques to demonstrate that sour beer during aging in wooden barrels is a source of suitable craft ale yeast candidates. In contrast to the traditional lambic beer maturation phase, during the aging of sour-matured production-style beer, different biotypes of Saccharomyces cerevisiae dominated the cultivable in-house mycobiota, which were followed by Pichia membranifaciens, Brettanomyces bruxellensis, and Brettanomyces anomalus. In addition, three putative S. cerevisiae × Saccharomyces uvarum hybrids were identified. S. cerevisiae feral strains sporulated, produced viable monosporic progenies, and had the STA1 gene downstream as a full-length promoter. During hopped wort fermentation, four S. cerevisiae strains and the S. cerevisiae × S. uvarum hybrid WY213 exceeded non-Saccharomyces strains in fermentative rate and ethanol production except for P. membranifaciens WY122. This strain consumed maltose after a long lag phase, in contrast to the phenotypic profile described for the species. According to the STA1+ genotype, S. cerevisiae partially consumed dextrin. Among the volatile organic compounds (VOCs) produced by S. cerevisiae and the S. cerevisiae × S. uvarum hybrid, phenylethyl alcohol, which has a fruit-like aroma, was the most prevalent. In conclusion, the strains characterized here have relevant brewing properties and are exploitable as indigenous craft beer starters.